Symbolic synthesis of state based reactive programs

Diploma Thesis

Nico Wallmeier

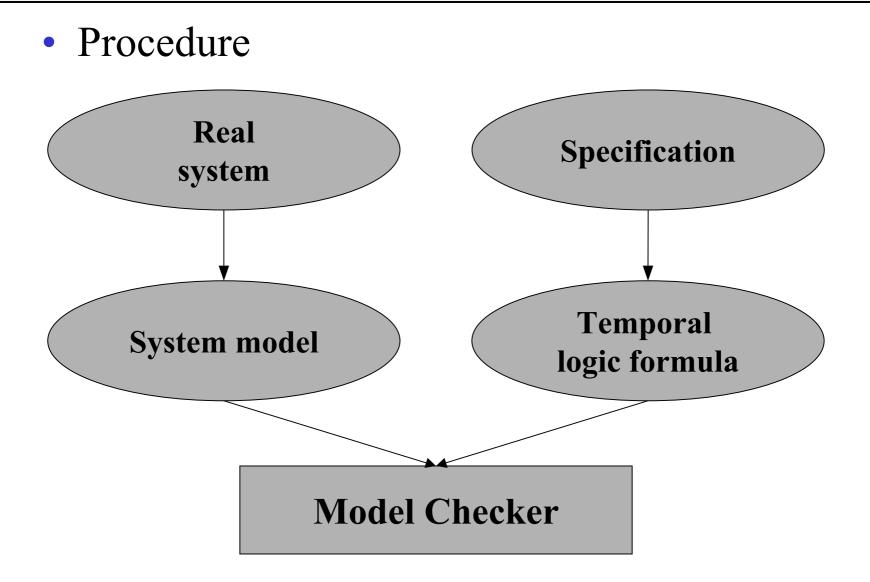
18.03.03

- 1. Background
- 2. Infinite games over a finite game graph
- 3. Transformation to the symbolic state space
- 4. Applications

1. Background

Motivation

- Crash of the first Ariane-5 rocket (iX, September 1996)
- Computation error of the Intel Pentium processor
- \Rightarrow Verification is necessary
- Testing & Simulation
 - Does not supply any correctness guarantee
 - Sometimes only limited applicability
- \Rightarrow Computer aided techniques in formal verification


• Clarke, Emerson et al.:

Model checking is an automatic technique for verifying correctness properties of safety-critical reactive systems.

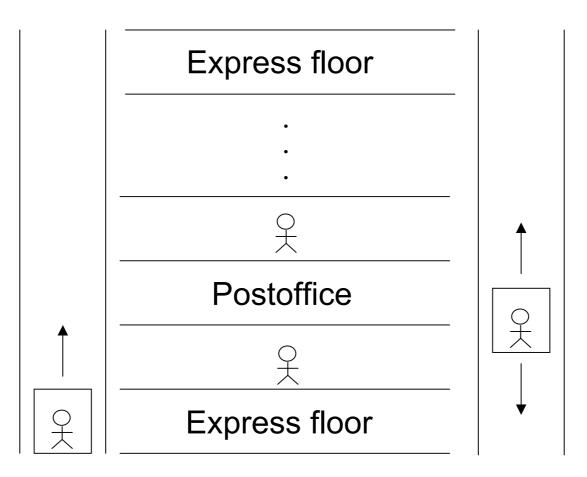
• System is tested against a specification

• If an error occurs an error scenario will be generated

Model Checking - 2

- Success in practical applications with two ideas (symbolic Model Checking):
 - Specification logic CTL (polynomial time) by
 Clarke and Emerson at the beginning of the 1980s
 - Symbolic method to overcome the "state explosion problem" – presentation of the states is done via BDDs (Binary Decision Diagrams) (Lee, Akers, Moret and Bryant)

Infinite two person games

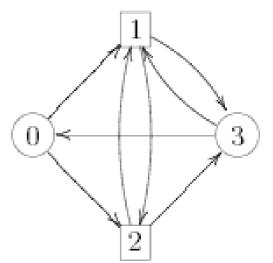

- Better system model: 2 agents
 - Controller (agent 0)
 - Environment (agent 1)
- Specification by
 - Game graph
 - Winning condition for player 0
- Play: Infinite path in the game graph

Infinite two person games - 2

- Classical theory of solving games
 - 1969 Büchi, Landweber
 - 1993 McNaughton
 - Currently: EU-project GAMES (Aachen, Bordeaux, ..., Warsaw)
- Goal of this work:
 - Transformation to the symbolic method
 - Implementation of these algorithms

Goal

• Goal is to solve such examples:


Specification

- Two lifts in a building with e floors should satisfy:
 - All requested floors will be served
 - The highest and the ground floor are served directly
 - No lift drives past a requested floor on his way
 - At most one person gets in a lift at a time
 - At least three floors are not requested
 - In the second floor is the post office. A lift needs one turn of the controller to wait there for exchanging the mail.
 - Both lifts are not at the same time in the second floor.

2. Infinite games over a finite game graph

Game graph

- *Game graph* G is defined by
 - Set of states $Q = Q_0 \dot{\cup} Q_1$
 - Transitions $E \subseteq Q \times Q$ (every state must have a successor)

- *Play* ρ is a infinite sequence of states $\rho = \rho(0)\rho(1)\rho(2)...$ with $(\rho(i),\rho(i+1)) \in E$
- $Oc(\rho) = \{ q \mid \exists i \ \rho(i) = q \} occurrence set \}$
- $In(\rho)=\{ q \mid \exists^{\omega}i \ \rho(i)=q \} infinity set$

Overview winning conditions

Name	Requirement	Winning condition
Reachability	$F \subseteq Q$	$Oc(\rho) \cap F \neq \emptyset$
Safety	$F \subseteq Q$	$Oc(\rho) \subseteq F$
Weak parity	$c:Q \rightarrow \{0,,k\}$	$max(Oc(c(\rho)))$ is even
Staiger-Wagner	$F \subseteq \operatorname{Pot}(Q)$	$Oc(\rho) \in F$
Request-Response	$P_i, Q_i \subseteq Q \ (1 \le i \le r)$	$\bigwedge_{i=1}^{r} \forall j \ (\rho(j) \in P_i \Rightarrow \exists j' \ge j \ \rho(j') \in R_i)$
		Temporal: $\bigwedge_{i=1}^{r} G(P_i \to F R_i)$
Büchi	$F \subseteq Q$	$In(\rho) \cap F \neq \emptyset$
Parity	$c:Q \rightarrow \{0,,k\}$	$\max(\ln(c(\rho)))$ is even

- Capture safety conditions by restricting the game graph
- 2. Rest of winning conditions is conjunction of request-response conditions: Reduce to Büchi condition
- 3. Solve game for Büchi condition

Reachability winning condition

- Simplest winning condition: reachability of a set F
- player 0 wins the play ρ ⇔
 ρ reaches a state in the set F sometime
- Solution with "Attractor": Compute for i=0,1,2,... the nodes, from which player 0 can reach the set F in ≤ i moves

Attractor

• Definition

- $Attr_0^i(F) = \{ q \in Q | player 0 can reach the set F from q in \le i moves \}$
- $-\operatorname{Attr}_0^0(F) = F$

$$- \operatorname{Attr}_{0}^{i+1}(F) = \operatorname{Attr}_{0}^{i}(F)$$

$$\cup \{ q \in Q_{0} \mid \exists (q,r) \in E \text{ with } r \in \operatorname{Attr}_{0}^{i}(F) \}$$

$$\cup \{ q \in Q_{1} \mid \forall (q,r) \in E \text{ holds } r \in \operatorname{Attr}_{0}^{i}(F) \}$$

- Conclusions:
 - $-\operatorname{Attr}_{0}^{i}(F) \subseteq \operatorname{Attr}_{0}^{i+1}(F)$

-
$$\operatorname{Attr}_0^{m}(F) = \operatorname{Attr}_0^{m+1}(F)$$
 for a m $\leq |Q|$
 $\Rightarrow \operatorname{Attr}_0(F) = \operatorname{Attr}_0^{m}(F)$ for such a m

Use of attractor computation

- Solvable games by attractor computation
 - Reachability game
 - Safety game
 - Weak parity game
 - Büchi game

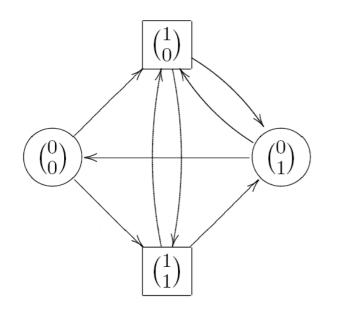
3. Transformation to the symbolic state space

Motivation

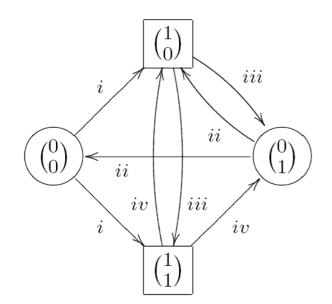
- Abstract state space:
 - "State Explosion Problem"
 - Analogous to Model Checking
 - Often no practical application possible
- ⇒In this work the symbolic method is introduced (as known from Model Checking)

- Set of Boolean variables
- $V = \{v_0, ..., v_n\}$ as well as $V' = \{v'_0, ..., v'_n\}$
- Concrete state is an assignment of all variables of V
- 2^n states \rightarrow n variables

Symbolic game graph


- Is defined by formulas for
 - Nodes of player 0
 - Nodes of player 1
 - Transitions
- Nodes of player 0

$$- \phi_0 = \neg v_0$$


• Nodes of player 1

$$- \varphi_1 = V_0$$

Symbolic game graph - 2

- Transition formula τ
 - i. $\neg V_0 \land \neg V_1 \land V_0$
 - ii. $\neg V_0 \wedge V_1 \wedge \neg V_1'$
 - iii. $V_0 \wedge \neg V_1 \wedge V_1$
 - iv. $\mathbf{v}_0 \wedge \mathbf{v}_1 \wedge (\mathbf{v}_0, \Leftrightarrow \neg \mathbf{v}_1)$

Attractor

• Definition

$$-\operatorname{Attr}_0^0(\lambda) = \lambda$$

$$-\operatorname{Attr}_{0}^{i+1}(\lambda) = \operatorname{Attr}_{0}^{i}(\lambda) \vee (\phi_{0} \wedge (\tau \wedge \operatorname{Attr}_{0}^{i}(\lambda)|_{V \to V^{c}})|_{V}) \vee (\phi_{1} \wedge \neg (\tau \wedge \neg \operatorname{Attr}_{0}^{i}(\lambda)|_{V \to V^{c}})|_{V})$$

• Strategy

- $\text{Strat}_0^0(\lambda) = \text{false}$

$$-\operatorname{Strat}_{0}^{i+1}(\lambda) = \operatorname{Strat}_{0}^{i}(\lambda) \vee (\operatorname{Attr}_{0}^{i+1}(\lambda) \wedge \neg \operatorname{Attr}_{0}^{i}(\lambda) \wedge \tau \wedge (\varphi_{1} \vee (\varphi_{0} \wedge \operatorname{Attr}_{0}^{i}(\lambda)|_{V \to V^{c}})))$$

Achieved results

Game	Solution
Reachability	Attractor computation
Safety	Attractor computation
Weak parity	Attractor computation
Staiger-Wagner	Reduction to weak parity
Request-Response	Reduction to Büchi
Büchi	Attractor+ and Recur
Parity	McNaughton-algorithm

4. Applications

Input language

- x[2], x`[2]
- Boolean Operations such as Or, And, XOr, XAnd, Not, ...
- Existential and universal quantifier for variable indices e.g. Ei{i<3} x[i]
- Arithmetic for variable indices, e.g. x[i+3]
- External parameters

Case study

- Request-Response game with $3 \cdot (e-2)$ RR-pairs
- $5 \cdot e + 3$ variables for e floors
 - e variables: Position first lift
 - e variables: Position second lift
 - e variables: Requests on the floors
 - e variables: Requests in the first lift
 - e variables: Requests in the second lift
 - One variable to determine the player
 - Two variables for the post office

Case study - 2

Floors	Size	BDD	Solve	Size	Size winning regions	
	game graph	creation	game	Büchi game	player 0	player 1
3	25	40.69 s	30.38 s	1,200	24	1
4	673	53.77 s	73.09 s	516,864	672	1
5	12,913	172.29 s	191.10 m	119,006,208	0	12,913

Case study - 3

Winning strategy of the environment for five floors

Force one lift to second floor, let it wait one move with no other requests and look at second lift:

Т

E	Pos. 2. Lift	Chosen Requests
	Ground floor	1. floor $+ 4$. floor
Р	1. floor	Ground floor + 4. floor
	3. floor	Ground floor + 4. floor
E	4. floor	Ground floor + 1. floor

Further work

- Develop suitable restrictions for
 - Game graph specification
 - Winning conditions
- Hierarchical approach (SDL specification)
- Support for time conditions

SymProg			
Infos Eingabe Parser	Zwischenergebnisse Ergebnis		
SpielSpiel <u>l</u> adenSpiel <u>s</u> peichern	Spieltyp: Spiel: Paritätsspiel kombiniert mit: kein 2. Spiel	Optionen Parser-Seite anzeigen (sollte nur bei kleinen Beispielen aktiviert werden)	
Spielgraph Paritätsspiel Externe Parameter Anzahl: 0 # Var Wert	Anzahl der Variablen: 2 Knoten Spieler 0: x[0]=x[1] Knoten Spieler 1: Rest x[0]=!x[1] x[0]=!x[1] Transitionen: X	Farbe: 0 1 2 $\begin{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} \\ \begin{pmatrix} 0\\ 0 \end{pmatrix} \\ \begin{pmatrix} 0\\ 1 \end{pmatrix} \\ \begin{pmatrix} 0\\$	
$((x[0]=x'[0])\&(x[1]=x'[1])\&!(x[0]\&!x[1])) \\ (x[0]\&!x[1]\&(x'[0]=x'[1])) \\ (!x[0]\&x'[1]\&(((x[0]=!x'[0])\&(x[1]=x'[1])) ((x[1]=!x'[1])\&(x[0]=x'[0])))) \\ \checkmark$			

SymProg	
Infos Eingabe Parser Zwischenergebnisse Ergebnis	
Spiel Spieltyp: Spieltyp: Paritätsspiel Image: Spieltyp: Spiel geeichern Spiel: Paritätsspiel Image: Spieltyp: kombiniert mit: kein 2. Spiel Image: Spieltyp: Image: Spieltyp:	elen aktiviert werden)
Spielgraph Paritätsspiel	1
Anzahl Farben: 3	
# Färbung	Par Wert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

SymProg	
Infos Eingabe Parser Zwischenergebnisse Ergebnis	
Spielgraph:	
Knoten Spieler0: x[0] = x[1]	
Knoten Spieler 1: x[0] = !x[1]	
Transitionen: $ \begin{cases} ((x[0] = x'[0]) & (x[1] = x'[1]) & !(x[0] & !x[1])) (x[0] & !x[1] & (x'[0] = x'[1])) (!x[0] & x'[1] & (((x[0] = x'[1])) & (x[1] = x'[1])) ((x[1] = !x'[1]) & (x[0] = x'[0])))) \end{cases} $!x'[0])
Paritätsspiel	
# Färbung	
0 !x[0] & !x[1]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

SymProg
Infos Eingabe Parser Zwischenergebnisse Ergebnis
⊡ · Paritätsspiel
parity(((!x[0]&!x[1]) (x[0]&x[1])),((!x[0]&x[1]) (x[0]&!x[1])),2,0)
$= \operatorname{attraktor}(((!x[0]\&!x[1]) (x[0]\&x[1])), ((!x[0]\&x[1]) (x[0]\&!x[1])), x[0]\&x[1]) = x[0]\&x[1]$
$ \operatorname{attr}(x[0] \& x[1]) = x[0] \& x[1]$
$\operatorname{attr}(x[0]\&x[1]) = x[0]\&x[1]$
□ parity(!x[0]&!x[1],((!x[0]&x[1]))(x[0]&!x[1])),1,0)
⊡ parity(((!x[0]&x[1]))(x[0]&!x[1])),!x[0]&!x[1],2,1)
$= \operatorname{attraktor}(((!x[0]\&x[1]))(x[0]\&!x[1])), !x[0]\&!x[1], ((!x[0]\&x[1]))(x[0]\&!x[1]))) = ((!x[0]\&x[1]))(x[0]\&!x[1]))$
$ \operatorname{attr}(((!x[0]\&x[1]) (x[0]\&!x[1]))) = ((!x[0]\&x[1]) (x[0]\&!x[1])) $ $ \operatorname{attr}(((!x[0]\&x[1]) (x[0]\&!x[1]))) = ((!x[0]\&x[1]) (x[0]\&!x[1])) $
$= \operatorname{parity}(false, !x[0] \& !x[1], 1, 1)$
$= \operatorname{parity}(\operatorname{lse}_{1}, \operatorname{r}_{1}, \operatorname{r}_{1})$ $= \operatorname{parity}(\operatorname{lse}_{1}, \operatorname{r}_{1}, \operatorname{r}_{1})$
$= \operatorname{attraktor}(!x[0] \otimes !x[1], \text{ false, } !x[0] \otimes !x[1]) = !x[0] \otimes !x[1]$
attr(!x[0]&!x[1]) = !x[0]&!x[1]
$\operatorname{attr}(!x[0]\&!x[1]) = !x[0]\&!x[1]$
parity(false,false,1,2)
$= \operatorname{attraktor}(!x[0]\&!x[1], ((!x[0]\&x[1]) (x[0]\&!x[1])), !x[0]\&!x[1]) = !x[1]$
$- \operatorname{attr}(!x[0] \& x[1]) = !x[1]$
$\operatorname{attr}(!x[1]) = !x[1]$
= parity(!x[0]&x[1],false,2,1)
= attraktor(!x[0]&x[1], false, !x[0]&x[1]) = !x[0]&x[1]
$ \operatorname{attr}(!x[0]\otimes x[1]) = !x[0]\otimes x[1]$
$\operatorname{attr}(!x[0]\otimes x[1]) = !x[0]\otimes x[1]$
parity(false,false, 1, 1)

SymProg	
Infos Eingabe Parser Zwischenergebnisse Ergebnis	
Gewinnbereiche:	
Gewinnbereich Spieler0: ((!x[0]&!x[1]) x[0])	
Mächtigkeit: 3	
Gewinnbereich Spieler 1: [x[0]&x[1]	
Mächtigkeit: 1	
Benötigte Zeit (Spiel): 0,020 Sekunden	
Benötigte Zeit (Parser): 0,951 Sekunden	
Gewinnstrategie:	
Knoten: [!x[0]&x[1]	Berechnen
Mögliche Nachfolgerknoten gemäß Gewinnstrategie:	
!x[0]&x[1]	