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Chapter 1

Introduction

A frequently regarded topic in computer science is the problem of controller
synthesis. When we look at an open system we can identify two actors (or
agents) – a controller and the environment. On the one hand, at each point
in time, an event occurs inside the environment which influences the behavior
of the system. On the other hand, at each point in time, the controller can
analyze the preceding behavior and take a certain action to regulate the
future behavior of the system. In such a setting, each agent reacts on the
actions of the other agent. This is why we also speak of a reactive system.
We want to make sure that a system like that fulfills certain properties like
maintenance of service or keeping safety conditions. Therefore a system
specification is provided that defines these properties. It describes how this
reactive system shall behave. Then the question arises: Can we construct
a controller that regulates the behavior of the system such that the system
specification is fulfilled?

In this thesis we concentrate on a problem which has first been posed by
Church [Chu57, Chu63]. He puts this question into a theoretical framework.
Church talks about a “requirement which a circuit is to satisfy” instead of a
specification. He asks for finding a representation of a circuit which satisfies
the requirement or to determine that a circuit like this does not exist. To-
day the term “circuit” has been replaced by the common notion of a finite
automaton. So nowadays under Church’s Problem we understand the ques-
tion whether for a given system specification there is a finite automaton with
output which produces a sequence of actions such that the system specifica-
tion is fulfilled – and can this finite automaton be constructed (synthesized)
effectively?

In many applications, one does not know the lifespan of the system in
advance or one considers the system to be nonterminating. That is why
we model time by the infinite set of natural numbers. We say that at each
point in time, both actors take a certain action. At each point i at first the
environment takes action Xi and then the controller takes action Yi. So we
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6 CHAPTER 1. INTRODUCTION

can describe the whole behavior of the system by two infinite sequences of
actions, namely

X = X0, X1, X2, . . . and
Y = Y0, Y1, Y2, . . . .

The sequence X describes the actions issued by the environment, the
sequence Y describes the actions of the controller. The system specification
depicts the set of acceptable behaviors. Proceeding on the assumption that
the set of possible actions is finite, the system specification can now be con-
sidered as a language of infinite words. The specification language consists
of all infinite sequences of pairs (Xi, Yi) that fulfill the system specification.

L =
{(

X0

Y0

)(
X1

Y1

)(
X2

Y2

)
· · ·

∣∣ (X, Y ) fulfills the specification
}

At each point in time the controller has the task to analyze the previous
behavior of the system and conclude from that to the next action. Pre-
cisely, at time point i the controller knows the past actions X0, . . . , Xi−1

and Y0, . . . , Yi−1 and additionally the last action of the environment Xi.
With that knowledge it has to determine the next action Yi such that the
resulting infinite word is in L.

The first solution of this problem was offered by Büchi and Landweber
[BL69]. They also transformed the problem statement into the terminology
of infinite games. It is only natural to model the situation described above
in a game theoretical context. The environment can arbitrarily adopt un-
expected actions so we assume the worst case that it tries to intentionally
sabotage the task of the controller. Then the alternating acting of environ-
ment and controller can be seen as a game of two competing players, the
environment filling the role of Player 1 and the controller filling the role of
Player 2. A play of this game is won by Player 2, if the system specification
is fulfilled, i.e. if X × Y ∈ L. Otherwise it is won by Player 1. Church’s
Problem then translates into the question: Is there a winning strategy for
Player 2 in this game and if there is one then how to construct it?

The game described above is a slight variant of a Gale-Stewart game
[GS53]. The only difference to Gale-Stewart games is due to the members
of the language L. Here we take the elementwise cross product of the two
sequences X and Y while in Gale-Stewart games we would take the inter-
leaving of X and Y and obtain a word X0Y0X1Y1 · · · .

The solution of Büchi and Landweber is even stronger than requested.
Church only asked for the controller to be synthesized. Büchi and Landwe-
ber give a symmetrical solution – for both parties, the controller and the
environment. Their result is that for every specification, expressible by a
finite automaton, one can determine, if there is a controller that can ful-
fill the specification, or if the environment can violate the specification and
furthermore that there is a finite automaton operator that implements this
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controller respectively the environment. They also make an equivalent state-
ment in game terminology.

“Every finite-state game is determined. Moreover, the player
who has a winning strategy in fact has one which can be executed
by a finite automaton.”

[BL69]

Determinacy of a game is a frequently used concept in game theory. It
means that there always is a winning strategy for one of the players. There
are only very few artificial games which are not determined. The first one of
those nondetermined games has been discovered by Gale and Stewart [GS53].
Later it has been shown by Martin [Mar75] that every Gale-Stewart game
which is defined with Borel winning conditions is determined. Admittedly,
the type of game we consider here is not a Gale-Stewart game, so the result
by Martin is not directly applicable. But both types of games are closely
related, so it seems natural (by a coding argument) that all the games of
the type we consider here which are defined with Borel winning conditions
are determined, too.

In 2007, the Büchi-Landweber Theorem has been refined in two indepen-
dent papers. Selivanov [Sel07] showed a refinement for aperiodic languages.
He stated that each game defined by an aperiodic ω-language L is deter-
mined with winning strategies that are computed by aperiodic synchronous
transducers. Rabinovich and Thomas [RT07] also have shown analogues of
the Büchi-Landweber Theorem. They investigated a repertory of logics and
proved that each X-definable game is determined with X-definable winning
strategies for X being one of the logics MSO, FO(<), FO(S), FO(<)+MOD
or strictly bounded logic. In their paper they also suggest the idea to express
winning conditions and strategies as (tuples of) languages.

The aim of the thesis is to pursue this approach. We want to refine
the Büchi-Landweber Theorem for certain subclasses of the regular lan-
guages. We concentrate on so-called weak languages. Examples will be
locally testable languages, piecewise testable languages and their counter-
parts of threshold countable languages.

There are several possibilities how to express the specification of the
system and the implementation of the environment and the controller. Büchi
and Landweber did both by finite automata – either with an accepting
condition or by finite automata with output. The paper [RT07] presents
both in the form of logical formulas. In this thesis we express winning
conditions as ω-languages and strategies as tuples of languages of finite
words.

Let us illustrate these ideas in a trivial example. The ω-language

Lcp =
{
α ∈ ({0, 1}2)ω

∣∣ ∀i : α(i) =
(
0
0

)
∨ α(i) =

(
1
1

)}
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describes all those system behaviors where Player 2 copies the choice of
Player 1. It shall serve as the winning condition of the game. The first
component of each letter is chosen by Player 1, the second one by Player 2.
A typical play where Player 2 wins would then look like the infinite word(

0
0

)(
0
0

)(
1
1

)(
0
0

)(
1
1

)(
1
1

)(
1
1

)(
0
0

)(
1
1

)(
0
0

)(
1
1

)
. . .

and a strategy can be given by a pair of languages (T0, T1) where

T0 = {w
(
0
∗
)
| w ∈ Σ∗}

T1 = {w
(
1
∗
)
| w ∈ Σ∗}

The symbol ∗ here serves as a dummy symbol and will be replaced by a
proper letter in the next turn of Player 2. This strategy means: if the
current play prefix is of the form T0, then pick 0 as the next action; if it is
of the form T1, then pick 1. Clearly this strategy is a winning strategy for
Player 2, because the resulting play is always a word from Lcp.

As one can see, we have expressed both winning conditions and winning
strategies as (tuples of) languages. It is important to notice that the ω-
language Lcp can be defined by only regarding factors of length 1. The
winning strategy (T0, T1) has the very same property. Each of the languages
T0 and T1 can be defined by only regarding factors of length 1. We exploit
the fact that such strategies can contain the dummy symbol ∗ only at the
very end of each word. Then a word is in T0, only if it contains the factor

(
0
∗
)
.

Languages that only depend on the factors of length k are called k-locally
testable languages. We will see for example that in general k-locally testable
languages are determined with k-locally testable winning strategies.

Outline

This thesis is structured as follows. In Chapter 2 the basic notions on infi-
nite games are introduced. We discuss two different types of infinite games.
Games on graphs are treated in Section 2.2. In particular the determinacy
of parity games and Muller games and of their weak counterparts are re-
called. The second type of infinite games is treated in Section 2.3. There we
introduce Church’s Problem and its associated game formally and embed
it into the concept of games on graphs. In Section 2.5 the focus lies on
weak languages and weak games. In Section 2.6 we remind of some basic
game reduction methods to convert Muller games into parity games and
weak Muller games into weak parity games. Chapter 3 covers the analysis
of Church’s Problem for some classes of regular languages, well-known from
language theory. We approach locally testable languages, piecewise testable
languages, locally threshold testable languages, piecewise threshold testable
languages and some modulo counting languages. In Chapter 4, we consol-
idate the results from the previous chapter to gain a general result which
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covers most of the preceding theorems. This general result is applied to
some examples afterwards. The last chapter (Chapter 5) summarizes this
work and suggests possibilities for future work.
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Chapter 2

Infinite Games

In this chapter we describe two different possibilities for defining infinite two-
player games. First one can describe a game by a language of all possible
plays. Then one can define the plays which are won by the first player by a
certain language of plays and the plays which are won by the second player
by its complement. Gale and Stewart [GS53] introduced these games and
they showed that well-founded Gale-Stewart games are always determined.
The problem stated by Church [Chu57] relates to a slight variant of Gale-
Stewart games. We will describe it in Section 2.3.

Secondly there are games on graphs. These games can be defined by two
sets of nodes, each set belonging to one of the players. The nodes represent
game-states and a play proceeds through these nodes, depending on the
moves of the players. The winning player is then determined by certain
conditions on the visited nodes. There is a vast range of such conditions. In
the Section 2.2 we define games on graphs and several winning conditions
that we will use in this thesis. In Section 2.5 we concentrate on “weak”
winning conditions and define what is meant when we talk about “weak
games”. In Section 2.6 we remind of some game reductions for games on
graphs. This is used to make the winning conditions for these games simpler,
but it comes along with a more complex game graph. As some reductions
are used in some of the proofs, we will define them there. Section 2.1 repeats
the basic notions of languages.

2.1 Words and Languages

We assume that the reader is familiar with the usual notations of mathe-
matics and language theory. Nevertheless we give a short repetition of the
most important concepts. The list shall be by no means exhaustive.

For any set A let P(A) denote the power set of A. An alphabet is a finite
and nonempty set of symbols. We usually denote such a set with a capital
Greek letter like Σ and call its elements symbols, letters or characters.

11
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A (finite) word over Σ is a tuple w = a1 · · · an of letters from Σ. The
length |w| of w is n. The empty tuple is called ε and has length 0. An
infinite word over Σ is an infinite sequence α = a0a1 · · · of letters from Σ
and α(i) = ai is the i-th letter of α. We denote with Σ∗ the set of all words
over Σ and with Σ+ the set of all words over Σ of length at least 1. So
Σ+ = Σ∗ \ {ε}. Σω is the set of all infinite words over Σ. A ∗-language over
Σ is a subset of Σ∗, an ω-language over Σ is a subset of Σω. In the literature
the above ∗-languages are usually just called languages (of finite words). We
introduce a special name here, because we want to emphasize the difference
between languages of finite words and languages of infinite words.

We assume that the reader is familiar with regular expressions and their
semantics. We will not define them here.

2.2 Games on Graphs

Games on graphs take place on a game arena. When visualizing such games,
the game arena serves as a playboard on which a single token is moved from
one node to the next node along the edges between them. The nodes are
divided into those belonging to Player 1 and those belonging to Player 2.
When the token reaches a node belonging to a player, this player can choose
arbitrarily among the adjacent graph nodes and move the token to this next
node.

A game arena is therefore often (see e.g. the survey paper by Zielonka
[Zie98]) defined as a tuple (Q1, Q2, E), where Q1 and Q2 are the set of nodes
of the two players and E is an edge relation. In the proofs in Chapter 3 we
will map (partial) plays of a game to runs of a deterministic finite automaton.
It turned out that by defining game arenas directly with a transition function
δ instead of an edge relation, these mappings can be handled with more ease.
Therefore we define games on graphs similarly to [Tho95].

Definition 1. A game arena is a tuple G = (Q1, Q2,Σ1,Σ2, δ), where

• Q1 and Q2 are (possibly infinite) nonempty and disjoint sets of nodes
(or “states”), belonging to Player 1 and Player 2, respectively; we
define Q := Q1 ∪Q2

• Σ1 and Σ2 are alphabets, belonging to Player 1 and Player 2, respec-
tively; we define Σ := Σ1 × Σ2

• δ : (Q1 × Σ1) ∪ (Q2 × Σ2) → Q is a transition function, which assigns
to each state and letter, belonging to the same player, a new state.

In the sequel, we fix the alphabets for Player 1 and Player 2 and therefore
we omit both alphabets in the tuple notation of a game arena. So we write
it as a tuple G = (Q1, Q2, δ).
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When the token reaches a node q ∈ Q1, Player 1 has to choose the next
node from δ(q, Σ1) and when it reaches a node q ∈ Q2, Player 2 has to choose
from δ(q, Σ2). Since each vertex has a successor, the game never ends. We
can witness an infinite path through the game arena which we call a play.

Definition 2. A play % = q0, q1, . . . is an infinite sequence of nodes, such
that for all i ∈ N there is an a ∈ Σ with δ(qi, a) = qi+1. A partial play
q0, . . . , qk is a finite sequence of nodes, such that for all 0 ≤ i < k, there
is an a ∈ Σ with δ(qi, a) = qi+1. For every play %, two sets of nodes are
defined, namely

Occ(%) :=
{
q ∈ Q

∣∣ ∃i ∈ N : %(i) = q
}

and
Inf(%) :=

{
q ∈ Q

∣∣ ∀i ∈ N ∃j > i : %(j) = q
}

being the set of nodes occurring in % and the set of nodes occurring infinitely
often in %, respectively.

The game defined so far still lacks a winner and a loser. For determining
a winner for a certain play, we need a so-called winning condition. If the
winning condition is fulfilled, Player 2 wins the play, otherwise Player 1 wins
it.

There are diverse winning conditions, that we can constitute for a game
arena, but we will only need a few of them. For every winning condition
needed, we now define special games, using them.

Definition 3. A Muller game is a tuple (G, F) where G is a game arena
and F ⊆ P(Q) is a family of subsets of Q. Player 2 wins a play % of this
game, if Inf(%) ∈ F. In the other case, Player 1 wins the play.

A weak Muller game is a tuple (G, F) where G is a game arena and
F ⊆ P(Q) is a family of subsets of Q. Player 2 wins a play % of this game, if
Occ(%) ∈ F. In the other case, Player 1 wins the play. Weak Muller games
are sometimes called Staiger-Wagner games.

For the parity winning conditions, we consider so-called coloring func-
tions. That are functions c : Q → {0, . . . ,m}, which assign to each node
q ∈ Q an element from a finite set of colors (here: numbers).

Definition 4. Let

C(%) := max
{
c(q)

∣∣ q ∈ Occ(%)
}

and
Cω(%) := max

{
c(q)

∣∣ q ∈ Inf(%)
}

be the maximal color of nodes occurring in % and the maximal color of nodes
occurring infinitely often in %, respectively.

A parity game is a tuple (G, c) where G is a game arena and c : Q →
{0, . . . ,m} is a coloring function. Player 2 wins a play %, if Cω(%) is even.
Otherwise, Player 1 wins the play.
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A weak parity game is a tuple (G, c) where G is a game arena and c : Q →
{0, . . . ,m} is a coloring function. Player 2 wins a play %, if C(%) is even.
Otherwise, Player 1 wins the play.

All these games consist of a game arena G and a second component,
which determines the winner of each play. Therefore we lapidary speak of
a winning condition when referring to this second component. We denote
such a winning condition with the Greek letter ϕ. Now all the games on
graphs are tuples (G, ϕ). We will come back to this notion when talking
about game reductions in the next section.

With the preceding definitions we have completely described all the
games on graphs that we will use. What is still missing are the solutions
of such games. We now introduce strategies and the important notion of
determinacy.

Definition 5. A strategy for Player 1 is a function f1 that assigns to each
partial play q0, . . . , qk which ends in a node qk ∈ Q1 of Player 1 a letter
a ∈ Σ1. A partial play % = q0, . . . , qk is said to be consistent with a strategy
f1, if for all 0 ≤ i < k with qi ∈ Q1 holds δ(qi, f1(q0, . . . , qi)) = qi+1. A play
% = q0, q1, . . . is consistent with a strategy f1, if every partial play prefixing
% is consistent with f1. A strategy f1 for Player 1 is called winning from
q0, if every play starting with q0 and consistent with f1 is won by Player 1.
The set W1 of all vertices q where there is a winning strategy for Player 1
from q is named the winning region of Player 1.

Analogously, a strategy for Player 2 is a function f2 that assigns to each
partial play q0, . . . , qk which ends in a node qk ∈ Q2 of Player 2 a letter
x ∈ Σ2. A partial play % = q0, . . . , qk is said to be consistent with a strategy
f2, if for all 0 ≤ i < k with qi ∈ Q2 holds δ(qi, f2(q0, . . . , qi)) = qi+1. A play
% = q0, q1, . . . is consistent with a strategy f2, if every partial play prefixing
% is consistent with f2. A strategy f2 for Player 2 is called winning from
q0, if every play starting with q0 and consistent with f2 is won by Player 2.
The set W2 of all vertices q where there is a winning strategy for Player 2
from q is named the winning region of Player 2.

A game is called determined, if W1∪W2 = Q1∪Q2, i.e for every starting
node either Player 1 or Player 2 has a winning strategy.

Note that for predefined strategies for both players, the resulting play
is uniquely determined. In general, one is interested in very simple winning
strategies – in particular in strategies with finite memory. There are cases,
in which not even a single bit of memory is needed to provide a winning
strategy. In that case, we call the strategy memoryless or positional.

Definition 6. Formally a strategy f is called memoryless, if f(q0, . . . , qk) =
f(q′0, . . . , q

′
l) for all partial plays q0, . . . , qk and q′0, . . . , q

′
l with qk = q′l. If a

strategy is memoryless, we can write it as a function f : Q → Σ, which maps
only the last state to a letter instead of the whole partial play.
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Parity games and weak parity games are both determined. For par-
ity games Emerson and Jutla [EJ91] and Mostowski [Mos91] independently
proved that memoryless strategies suffice. Today this is a well-known result.
For a comprehensive proof see also [Zie98, GTW02].

Theorem 7. Parity games are determined with memoryless winning strate-
gies. Furthermore, if G is finite, then the winning regions and the winning
strategies can be constructed effectively.

The same result also holds for weak parity games. The more basic proof
can be found for example in [LT00].

Theorem 8. Weak parity games are determined with memoryless winning
strategies. Furthermore, if G is finite, then the winning regions and the
winning strategies can be constructed effectively.

2.3 Church’s Problem

In this section, we want to formulate Church’s Problem. The formalism that
we use is based on the notion of an infinite game. We therefore describe a
game between two players, called Player 1 and Player 2. Player 1 and
Player 2 choose letters in turn. Two letters at a time are put into a pair.
The pairs are concatenated and form an infinite word. For deciding the
winner, this word is tested for membership of a certain language L. Player 2
wins the game, if the word is in L, otherwise Player 1 wins the game.

Let Σ1 denote a finite set of symbols (an alphabet) from which Player 1
can choose and let Σ2 denote the alphabet of Player 2. The letter ∗ /∈ Σ2 is a
fixed letter, which does not occur in Σ2. This letter serves as a placeholder.

In our view, Player 1 and Player 2 present letters alternately and append
them to a common word. This common word has the form

• P1 := (Σ1 × Σ2)∗, if it is Player 1’s turn and

• P2 := (Σ1 × Σ2)∗(Σ1 × {∗}), if it is Player 2’s turn.

Starting with the empty word, in each turn the word grows successively
larger. When it is Player 1’s turn, he takes the common word of the form
P1, chooses a letter a ∈ Σ1 and appends

(
a
∗
)

to the common word. Then the
word is of the form P2. It is Player 2’s turn. She chooses a letter x ∈ Σ2 and
replaces the

(
a
∗
)

at the very end of the word by
(
a
x

)
. Then again, the word

is in P1 and it is Player 1’s turn, etc. Since the game under consideration is
infinitely long, the length of this word is unbounded and we can identify it
with an infinite word α, which we call the result of a play.

For a precise definition of the result of a play, we somehow have to
express that one finite word can be continued to another infinite word. For
that reason, we extend the usual prefix relation a little bit. We not only



16 CHAPTER 2. INFINITE GAMES

regard words from P1 as being able to prefix an infinite word, but also words
from P2. The succeeding ∗ in a word from P2 is ignored.

Definition 9. For w ∈ P1 ∪ P2 and α ∈ (Σ1 × Σ2)ω we set

w v α :⇐⇒ ∃β ∈ Σω : w · β = α

∨∃β ∈ Σω ∃u ∈ P1 ∃a ∈ Σ1 ∃x ∈ Σ2 :
w = u ·

(
a
∗
)
∧ w ·

(
a
x

)
· β = α.

We call v the extended prefix relation.

From now on we fix the alphabets Σ1 and Σ2. Therefore we can define the
main object that we use throughout this thesis just by a single ω-language.

Definition 10. An instance of Church’s Problem is an ω-language L ⊆
(Σ1 ×Σ2)ω. We denote the game for L with Ch(L). A play for Ch(L) is an
infinite sequence % = w0, w1, . . . of finite words such that

• w0 = ε,

• for all even i ∈ N there is an a ∈ Σ1 such that wi+1 = wi

(
a
∗
)

and

• for all odd i ∈ N there are u ∈ P1, a ∈ Σ1 and x ∈ Σ2 such that
wi = u

(
a
∗
)

and wi+1 = u
(
a
x

)
.

A partial play for Ch(L) is a finite sequence w0, . . . , wk which can be con-
tinued to a play. For each play %, there is a unique infinite word α(%) ∈
(Σ1 × Σ2)ω with %(i) v α(%) for all i ∈ N. We call this word the result of a
play. Player 2 wins the play %, if α(%) ∈ L. In the other case, Player 1 wins
it.

Note that there is a bijection between the set of all possible plays and
(Σ1 × Σ2)ω. For each possible play, there is a corresponding result of that
play and for each possible result of a play there is a corresponding play.

One way to describe strategies for the players is by gathering all the
words, where a certain letter shall be chosen, and put them into a set.
Thus, for each letter emerges a set of nodes, happening to be a ∗-language
over (Σ1 × (Σ2 ∪ {∗})). The language is either a subset of P1 or a subset
of P2. We put these languages into a tuple, obtaining two tuples, one for
Player 1 and one for Player 2.

Definition 11. A strategy for Player 1 is an indexed family of languages
(Sa)a∈Σ1 which are pairwise disjoint and cover P1, i.e.

⊎
a∈Σ1

Sa = P1.
A strategy for Player 2 is an indexed family of languages (Tx)x∈Σ2 which

are pairwise disjoint and cover P2, i.e.
⊎

x∈Σ2
Tx = P2.

A play % is played consistent to a strategy (Sa)a∈Σ1 for Player 1, if for
every odd i ∈ N and %(i) = w

(
a
∗
)

it holds that w ∈ Sa. A play % is played
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ε

(
0
∗
)

(
0
0

)
(
0
0

)(
0
∗
) (

0
0

)(
1
∗
)

(
0
1

)
(
0
1

)(
0
∗
) (

0
1

)(
1
∗
)

(
1
∗
)

(
1
0

)
(
1
0

)(
0
∗
) (

1
0

)(
1
∗
)

(
1
1

)
(
1
1

)(
0
∗
) (

1
1

)(
1
∗
)

Figure 2.1: Excerpt from the game arena of a game with Σ1 = Σ2 = {0, 1}.

consistent to a strategy (Tx)x∈Σ2 for Player 2, if for every even i ∈ N and
%(i) = w

(
a
x

)
it holds that w

(
a
∗
)
∈ Tx.

A strategy (Sa)a∈Σ1 for Player 1 is called winning, if every play played
consistent to it is won by Player 1. A strategy (Tx)x∈Σ2 for Player 2 is called
winning, if every play played consistent to it is won by Player 2.

If strategies for Player 1 and Player 2 are preset, there is a play satisfying
both strategies and furthermore this play is uniquely determined.

We can also map this game to the notion of games on graphs, introduced
in Section 2.2. For this, we model it by the game arena G = (P1, P2, γ),
where

• P1 and P2 are defined as above,

• γ(w, a) = w
(
a
∗
)

and

• γ(w
(
a
∗
)
, x) = w

(
a
x

)
for all w ∈ P1, a ∈ Σ1 and x ∈ Σ2.

This game always starts with the empty word, so we declare the node p0 := ε
to be the starting node for all plays on this game arena. See Figure 2.1 for
a finite excerpt from a game arena.

This representation of the game arena as an infinite tree is similar to the
one defined by Gale and Stewart [GS53]. Gale and Stewart also defined the
set of positions of their game as the vertices of an infinite tree. However the
plays are described differently. For example a play in Ch(L) starting with
ε,

(
0
∗
)
,

(
0
1

)
,

(
0
1

)(
0
∗
)
, . . . would translate to x0, 0, 01, 010, . . . in Gale-Stewart

games. This is an important difference when it is demanded to describe
winning conditions by ω-languages.
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With the above definitions, we can now define what it means to solve
Church’s Problem. This will be the main notion used in this thesis.

Definition 12. Let L be a class of ω-languages and K be a class of ∗-
languages. We say that L-games are determined with K-winning strategies,
if for each L ∈ L

∃(Sa)a∈Σ1 (∀a ∈ Σ1 : Sa ∈ K ∧ (Sa)a∈Σ1 is winning for Player 1)
∨∃(Tx)x∈Σ2 (∀x ∈ Σ2 : Tx ∈ K ∧ (Tx)x∈Σ2 is winning for Player 2),

so for each L ∈ L there is either a winning strategy (Sa)a∈Σ1 for Player 1,
which is in K or a winning strategy (Tx)x∈Σ2 for Player 2, which is in K.

2.4 Example

Let us look at an example of Church’s Problem, which one can find in
[Tho08]. Let Σ1 := Σ2 := {0, 1}. We set L ⊆ Σω to be the language defined
by

α ∈ L :⇐⇒ ∀i : α(i) 6=
(
1
0

)
∧ ∀i : α(i) =

(
0
0

)
→ α(i + 1) 6=

(
0
0

)
∧

(
∀i ∃j > i : α(j) =

(
0
1

))
→

(
∀i ∃j > i : α(j) =

(
0
0

))
.

In the first row of this definition, the infix
(
1
0

)
is excluded from the set of

allowed infixes. If such an infix occurs in α, Player 2 looses the game. In the
second row, it is simply stated, that Player 2 may not pick the letter 0 two
times consecutively and the third row demands infinitely many statements
of 0 from Player 2, if Player 1 states infinitely many letters 0.

We can also express the language L by a regular expression. Then

L = (ε +
(
0
0

)
)[(

(
0
1

)
+

(
1
1

)
)+

(
0
0

)
]ω

+(ε +
(
0
0

)
)[(

(
0
1

)
+

(
1
1

)
)+

(
0
0

)
]∗

(
1
1

)ω
.

Player 2 has a strategy to win this game. Whenever Player 1 provides
1, Player 2 answers with 1. When Player 1 provides 0, the answer depends
on the last but one letter. If the last but one letter was

(
0
0

)
, then Player 2

answers with 1, else with 0.
We express this solution of the game as a tuple of languages (T0, T1). If

the game state is in T1, Player 2 answers with 1, else she answers with 0:

T1 := (Σ1 × Σ2)∗(
(
1
∗
)

+
(
0
0

)(
0
∗
)
)

T0 := (Σ1 × Σ2)∗ \ T1

Both the instance of Church’s Problem L and its solution (T0, T1) are
regular. Moreover they are expressible by some conditions over infixes and
suffixes of length at most 2.
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2.5 Weak Games

In Section 2.2 about games on graphs we have seen Muller games and parity
games and their weak counterparts, weak Muller games and weak parity
games. The weak versions do not consider infinite behavior anymore. In
particular, the winning conditions of these weak games do not depend on
the set Inf(%) of states occurring infinitely often in a play.

For instances of Church’s Problem there do also exist these weak coun-
terparts. We say that Ch(L) describes a weak game, if the language L is
recognized by a deterministic weak Muller automaton, also called a Staiger-
Wagner automaton (cf. [SW74]).

Definition 13. A Staiger-Wagner automaton is a tuple A = (Q,Σ, q0, δ, F)
where

• Q is a finite set of states,

• Σ is an alphabet,

• q0 ∈ Q is the starting state,

• δ : Q× Σ → Q is the transition function and

• F ⊆ P(Q) is a family of state sets.

For every word α ∈ Σω there is a unique run % = q0, q1, . . . of A on α with
δ(qi, α(i)) = qi+1 for every i ∈ N. Similar to games, we define the set

Occ(%) :=
{
q ∈ Q

∣∣ ∃i ∈ N : %(i) = q
}

of all occurring states in a run. An infinite word α ∈ Σω is accepted by A,
if Occ(%) ∈ F.

Most of the games that we regard in the next chapters will be weak
games. The proof idea that we are going to present in Chapter 3 is based on
such weak games. Therefore it is helpful to distinguish between both types
of games.

Definition 14. A game Ch(L) is called a weak game, if L is recognized by
a Staiger-Wagner automaton, otherwise it is called a strong game.

2.6 Game Reductions

The idea of a game reduction is to reduce a game with a complex winning
condition to a game with a more simple winning condition but with an ex-
tended game graph. The simple game can then be solved and the resulting
winning strategies can be transformed back to the complex game graph,
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yielding a finite-state strategy. One can for example reduce a Muller game
to a parity game and thus obtain a more complex game arena, where a mem-
oryless winning strategy exists. This memoryless winning strategy together
with the finite game graph of the parity game then describe a finite-state
winning strategy for the Muller game.

Definition 15. Let G = (Q1, Q2, δ) and G′ = (Q′
1, Q

′
2, δ

′). The game (G, ϕ)
is reducible to (G′, ϕ′), if there is a finite set S and functions g : Q → S and
f : Q× S → S with

1. Q′
1 = Q1 × S and Q′

2 = Q2 × S

2. each play % = q0, q1, . . . in G is translated into a play %′ = q′0, q
′
1, . . .

in G′ as follows:

• q′0 = (q0, g(q0))
• ∀q ∈ Q1, s ∈ S, a ∈ Σ1 : δ′((q, s), a) = (δ(q, a), f(δ(q, a), s))
• ∀q ∈ Q2, s ∈ S, a ∈ Σ2 : δ′((q, s), a) = (δ(q, a), f(δ(q, a), s))

3. Player 1 wins % in (G, ϕ) iff Player 1 wins %′ in (G′, ϕ′).

Note that by the translation of a play % into a play %′, described in item 2
of Definition 15, we also obtain that each partial play q0, . . . , qk of (G, ϕ) is
translated into a partial play q′0, . . . , q

′
k of (G′, ϕ′).

Throughout this thesis, we will use two common game reductions. The
first one is reducing a weak Muller game to a weak parity game. The second
is reducing a Muller game to a parity game. In the following we will shortly
describe both reductions together with the data structures they use.

The reduction of weak Muller games to weak parity games is simple. For
a given game arena G = (Q1, Q2, δ) and weak Muller set F, define a new
game arena G′ = (Q′

1, Q
′
2, δ

′) by setting Q′
1 = Q1 × P(Q), Q′

2 = Q2 × P(Q).
The first component of the new game arena G′ is the same as in G. The
set of already visited states is saved in the new second component, which is
called the appearance record AR. For a partial play q0, . . . , qn, the AR is the
set {q0, . . . qn}. The new transition function δ′ is then defined by setting

δ′((q1, AR1), a) := (q2, AR2) where q2 = δ(q1, a), AR2 = AR1 ∪ {q2} .

Colors are assigned to the new states by

c(q, M) :=

{
2 · |M |, if M ∈ F;
2 · |M | − 1, otherwise.

For every play % over G, there is a corresponding play %′ over G′ such that % is
won by Player 1 (respectively Player 2) if %′ is won by Player 1 (respectively
Player 2). One observes, that the AR is of finite size and therefore the
AR describes the finite memory which is needed for a finite-state winning
strategy in weak Muller games.
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Theorem 16. Weak Muller games are determined with finite-state winning
strategies. Furthermore, if G is finite, then the winning regions and the
winning strategies can be constructed effectively.

Reducing Muller games to parity games is much more complex. The
AR does not suffice for this. Instead we need a structure, called the latest
appearance record LAR. It was first introduced in [GH82]. It is basically a
record, that tracks the recently visited states. An LAR is a permutation
of all states where one of the states is particularly marked. So the LAR
structure can be saved in Perm(Q)×Q, where Perm(Q) is the set of all pos-
sible permutations of Q. The permutation describes the order in which the
states appeared in the current play. The marked state (the so-called “hit”)
indicates which subset of the permutation was visited recently. The hit is
commonly specified by underlining the marked state in the permutation.
For the empty sequence of states the LAR is (q0, . . . , qn). For a sequence
of states q0, . . . , qn, qn+1, the new LAR is obtained by updating the LAR
of q0, . . . , qn: move the state qn+1 from position j to the beginning of the
permutation and underline the state at position j.

For a given game arena G = (Q1, Q2, δ) and Muller set F, define a
new game arena G′ = (Q′

1, Q
′
2, δ

′) by setting Q′
1 = Q1 × Perm(Q) × Q,

Q′
2 = Q2 ×Perm(Q)×Q. The first component of the new game arena G′ is

again the same as in G. The other two components describe the LAR. The
new transition function δ′ is then defined by setting

δ′((q1, LAR1), a) := (q2, LAR2)
where q2 = δ(q1, a), LAR2 = update(LAR1, q2).

Colors are assigned to the new states by

c(q, (q1, . . . , qh, . . . , qn)) :=

{
2 · h, if {q1, . . . , qh} ∈ F;
2 · h− 1, otherwise.

For every play % over G, there is a corresponding play %′ over G′ such that % is
won by Player 1 (respectively Player 2) if %′ is won by Player 1 (respectively
Player 2). The LAR is of finite size and therefore the LAR describes the
finite memory which is needed for a finite-state winning strategy in Muller
games. See [Tho95] for a proof of the correctness of this reduction.

Theorem 17. Muller games are determined with finite-state winning strate-
gies. Furthermore, if G is finite, then the winning regions and the winning
strategies can be constructed effectively.



22 CHAPTER 2. INFINITE GAMES



Chapter 3

Special Regular Winning
Conditions

In this chapter we develop analogues to the result of Büchi and Landwe-
ber. Therefore it is necessary to link classes of ω-languages with classes
of ∗-languages. We will work with well-known examples of classes K of
∗-languages and associate with them certain classes LK of ω-languages.

We will then show for such pairs (K,LK) that

LK-games are determined with K-winning strategies.

The language classes K and LK will share the same name. For example
we will consider K being the class of so-called locally testable ∗-languages
and LK being the class of so-called locally testable ω-languages. However,
a concrete formally defined link between K and LK is not acquired until
Chapter 4.

This chapter is structured as follows. At first (Section 3.1) we will il-
lustrate the proof idea for solving Church’s Problem for weak games, since
the proofs all follow the same scheme. Then we examine Church’s Prob-
lem for locally testable games (Section 3.2) and for strongly locally testable
games (Section 3.3). In the case of strong local testability, which does not
describe weak games, we will see that the claim fails. Then we consider
locally threshold testable games in Section 3.4 and piecewise testable games
in Section 3.5. We generalize the concept of piecewise testability in Sec-
tion 3.6, obtaining piecewise threshold testable languages. We will do a
little excursion to combinatorics on words when examining this language
class and obtain an inclusion of the hierarchy of piecewise threshold testable
languages inside the hierarchy of piecewise testable languages. In Section 3.7
we proceed to languages with modulo counting quantifiers and examine two
different possibilities for those quantifiers.

23
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3.1 Proof Scheme

The proofs of this chaper closely resemble each other, because we will use
repeatedly the same machinery of argumentation. Therefore we sketch the
proof idea already at this point.

A family of ω-languages L and a family of ∗-languages K are given. Each
element L ∈ L defines an instance of Church’s Problem. We want to show
that the game Ch(L) is determined, that means that one of the players has
a winning strategy. We simulate the game Ch(L) by a game on a graph.

Step 1 Construct a game arena G = (Q1, Q2, δ) which has a finite set of
nodes Q = Q1 ∪Q2.

Step 2 Define a mapping h : P1 ∪ P2 → Q, such that h respects the tran-
sition function. This mapping assigns to each partial play of Ch(L) a
node of the finite game arena G. It holds δ(h(p), a) = h(γ(p, a)). We
call such a mapping a homomorphism. We need h to map each play %
of Ch(L) to a corresponding play %′ in the new game graph.

Step 3 Equip G from Step 1 with a winning condition ϕ such that

• the resulting game (G, ϕ) is determined,

• the winning regions and winning strategies can be computed ef-
fectively,

• the winning strategies are finite-memory strategies (or even mem-
oryless strategies) and

• Player 1 wins a play % iff Player 1 wins the corresponding play %′

in Ch(L)

Then we obtain a game which is determined and the winning strategy
f of the winning player (the player who wins from q0 = h(ε)) can be
computed effectively.

Furthermore if the strategy f is memoryless (e.g. for weak parity games and
parity games), then we can also execute Step 4.

Step 4 Transfer the memoryless winning strategy f from (G, ϕ) back to
Ch(L). For a strategy (Sa)a∈Σ1 for Player 1 accomplish this by first
gathering all the nodes from which a certain letter is chosen:

Qa
1 :=

{
q ∈ Q1

∣∣ f(q) = δ(q, a)
}

and then building up the language Sa by taking the preimage of this
set under the homomorphism h:

Sa :=
{
w ∈ P1

∣∣ h(w) ∈ Qa
1

}
.



3.1. PROOF SCHEME 25
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h

Figure 3.1: Step 3: Bold arrows indicate the memoryless winning strategy
in (G, ϕ)

Analogously for a strategy (Tx)x∈Σ2 for Player 2 construct

Qx
2 :=

{
q ∈ Q2

∣∣ f(q) = δ(q, x)
}

and
Tx :=

{
w ∈ P2

∣∣ h(w) ∈ Qx
2

}
.

We will do this construction such that the preimage of a node q ∈ Q is
a language from K. Furthermore K will be closed under finite unions,
so each set Sa (respectively Tx) will again be in K. This proves the
result that Ch(L) has K-definable winning strategies.

0 1

0

0 1

1
0 1

0,1

0 1

0,1

h

Figure 3.2: Step 4: The strategy is transfered back to Ch(L)

In the case that the strategy is not memoryless, we may still be able to
carry out a game reduction to a game with memoryless winning strategies
and after that execute Step 4. With a game reduction however comes a finer
division of the languages that result from the preimage. So they may not
be in K anymore.
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3.2 Locally Testable Languages

In this section, we define the classes of locally testable languages – for both ∗-
languages and ω-languages. Then we give a first try of a proof, using a weak
Muller game and the reduction to a weak parity game with an appearance
record (cf. Section 2.6). We will see, that this method gives an inferior
result, compared to a direct approach via weak parity games, which we will
use in Section 3.4 in conjunction with locally threshold testable languages.

Locally Testable ∗-Languages

A ∗-language is locally testable, if one can test membership of a word to this
language by means of a finite table of prefixes, suffixes and factors. This
means that certain words cannot be distinguished, if their prefixes, suffixes
and factors of a certain bounded length are equal. So it is obvious to collect
these indistinguishable words into the same class of an equivalence relation.

Definition 18. For every word w ∈ Σ∗ define the sets

Infixk(w) :=
{
u ∈ Σ∗ ∣∣ ∃v1, v2 ∈ Σ∗ : v1 · u · v2 = w, |u| ≤ k

}
,

Prefixk(w) :=
{
u ∈ Σ∗ ∣∣ ∃v ∈ Σ∗ : u · v = w, |u| ≤ k

}
,

Suffixk(w) :=
{
u ∈ Σ∗ ∣∣ ∃v ∈ Σ∗ : v · u = w, |u| ≤ k

}
,

of infixes, prefixes respectively suffixes of w of length ≤ k.
For every k ≥ 1, we define an equivalence relation on the words from Σ∗.

Let u, v ∈ Σ∗. Then

u ∼k v :⇐⇒ Infixk(u) = Infixk(v)
∧ Prefixk−1(u) = Prefixk−1(v)
∧ Suffixk−1(u) = Suffixk−1(v).

A language K ⊆ Σ∗ is called k-locally testable, if it can be written as a
(finite) union of classes from Σ∗/∼k:

K =
m⋃

i=1

[wi]∼k

A language K ⊆ Σ∗ is called locally testable, if it is k-locally testable for a
certain k ≥ 1.

McNaughton [McN74] has shown that it is decidable, whether a given
regular ∗-language is locally testable or not.

Example 19. For example the language of all even words, given by the
regular expression (ΣΣ)∗, is not locally testable. One cannot distinguish
between a word of even length and a word of odd length, if one merely
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knows the factors of both words and how they start and end. The language
defined by the regular expression (ab)∗ is however locally testable. We know
that it can only contain the factors ab and ba and must start with a and
end with b.

The language a(a+b)∗ is also locally testable: the prefix a is mandatory;
factors and suffixes do not matter at all.

Locally Testable ω-Languages

An ω-language is locally testable, if one can test membership of a word to
this language by means of a finite table of prefixes and factors. Suffixes are
not considered here, as infinite words don’t have finite suffixes.

There are several characterizations of locally testable ω-languages, for
example in the book by Perrin and Pin [PP04]. They also call these lan-
guages “prefix-factors testable”.

Definition 20. For every word α ∈ Σω define the sets

Infixk(α) :=
{
u ∈ Σ∗ ∣∣ ∃v ∈ Σ∗∃β ∈ Σω : v · u · β = α, |u| ≤ k

}
,

Prefixk(α) :=
{
u ∈ Σ∗ ∣∣ ∃β ∈ Σω : u · β = α, |u| ≤ k

}
,

of infixes respectively prefixes of w of length ≤ k.
For every k ≥ 1, we define an equivalence relation on the words from

Σω. Let α, β ∈ Σω. Then

α ∼ω
k β :⇐⇒ Prefixk−1(α) = Prefixk−1(β)

∧ Infixk(α) = Infixk(β).

A language L ⊆ Σω is called k-locally testable, if it can be written as a
finite union of classes from Σω/∼ω

k :

L =
m⋃

i=1

[αi]∼ω
k

A language L ⊆ Σω is called locally testable, if it is k-locally testable for a
certain k ≥ 1.

Example 21. For example over the alphabet Σ = {a, b} let L1 be the
language of all infinite words α with the following property. Every factor of
α of length 3 contains an even number of letters a. L1 is certainly locally
testable, as it only depends on the factors of each word. The factors aab,
aba, baa and bbb are allowed. All other factors of length 3 are forbidden.

Let L2 be the language of all infinite words over Σ where eventually
nothing but b appears. An ω-regular expression for this language is (a +
b)∗bω. L2 is not locally testable. Assume it is k-locally testable. Then the
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word bkabω is equivalent to (bka)ω, because both words possess the same
factors up to length k. But bkabω ∈ L while (bka)ω /∈ L.

A slightly modified version of L2 would be the ω-language L3 defined
by (a + b)∗cω which again is locally testable. The factors ca and cb do not
occur, but c does occur.

Church’s Problem

We now examine Church’s Problem for locally testable languages. An ana-
logue to the Büchi-Landweber Theorem would be, that every game that is
defined by a locally testable ω-language is determined with locally testable
winning strategies. This statement really holds and in fact we can even
sharpen it by talking about k-locally testable games for a specific k.

Theorem 22. For every k ∈ N, k-locally testable games are determined
with (k + 1)-locally testable winning strategies.

This is not the best result, we can get. In fact even k-locally testable
winning strategies are enough for winning this game. We will see the better
result as Theorem 29 in one of the next sections as a special case of locally
threshold testable games. This weaker result is due to a detour over weak
Muller games and the game reduction method. The reason why we still
give the proof for this result is, that the proofs developed over time and in
the early stages we used a detour over weak Muller games and the game
reduction method. It is interesting to see that this method does not give us
the sharpest result.

Proof. Let L ⊆ (Σ1 × Σ2)ω be an instance of Church’s Problem and let
L be k-locally testable. Then there are words α1, . . . , αm ∈ Σω with L =⋃m

i=1 [αi]∼ω
k
.

We map every play of the original game to a play of another well-known
game, namely a weak parity game. However, we won’t do this directly, but
instead take a little detour over a weak Muller game. For this we define a
game arena G = (Q1, Q2, δ) with node sets Q1 and Q2 owned by Player 1
and Player 2, respectively. In every node, we memorize the last k symbols
that we have seen so far. We set

Q1 :=
{
w

∣∣ w ∈ P1, |w| ≤ k
}
,

Q2 :=
{
w ·

(
a
∗
) ∣∣ w ∈ P1, |w| < k, a ∈ Σ1

}
and Q := Q1∪Q2. Every (partial) play of this game starts in the designated
starting node q0 := ε. It then passes through some of the states with words
of length strictly lesser than k, always increasing the length. Then it stays
inside the set of states with words of length equal to k. We define the



3.2. LOCALLY TESTABLE LANGUAGES 29

transition function δ : (Q1 × Σ1) ∪ (Q2 × Σ2) → Q by

δ(w, a) := w
(
a
∗
)

, if |w| < k

δ(
(

b
x

)
w, a) := w

(
a
∗
)

, if |w| = k − 1
δ(w

(
a
∗
)
, x) := w

(
a
x

)
.

The acceptance component depends on the words α1, . . . , αm, which
make up the language L. It consists of sets Fi for every αi:

F :=
{
F1, . . . , Fm

}
Precisely, Player 2 wins the game if and only if the infinite word that

we read is in one of the equivalence classes [αi]∼ω
k
. That is the case, iff the

prefixes and infixes of our word correspond to the prefixes and infixes of αi,
thus

Fi :=
{
w ∈ Q1

∣∣ w ∈ Prefixk−1(αi)
}

∪
{
w

(
a
∗
)
∈ Q2

∣∣ ∃x ∈ Σ2 : w
(
a
x

)
∈ Prefixk−1(αi)

}
∪

{
w ∈ Q1

∣∣ w ∈ Infixk(αi), |w| = k
}

∪
{
w

(
a
∗
)
∈ Q2

∣∣ ∃x ∈ Σ2 : w
(
a
x

)
∈ Infixk(αi), |w

(
a
∗
)
| = k

}
.

The game (G, F) is a weak Muller game. We know from Theorem 16 that
it is determined and that both players have finite-state winning strategies.
In order to transfer these strategies back to the original game, we need the
content of the finite memory. So we will first map the game to a weak parity
game and then transfer the (memoryless) strategies from this weak parity
game back to the original game.

In order to translate partial plays in Ch(L) into partial plays in G, we
define a function g : P1 ∪ P2 → Q by letting

g(w) :=

{
v, if w = uv, |v| = k;
w, otherwise

for each w ∈ P1 ∪ P2. It is easy to show that g is a homomorphism. We
do it for the case that w ∈ P1, w = u

(
b
x

)
v for certain u, v ∈ P1, |v| = k − 1,

b ∈ Σ1, x ∈ Σ2:

δ(g(w), a) = δ(g(u
(

b
x

)
v), a)

= δ(
(

b
x

)
v, a)

= v
(
a
∗
)

= g(u
(

b
x

)
v
(
a
∗
)
)

= g(γ(u
(

b
x

)
v, a))

= g(γ(w, a)).
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The other cases work analogously.
We carry out the game reduction from this weak Muller game to a weak

parity game (G′, c), described in Section 2.6. We obtain a new game arena
G′ = (Q′

1, Q
′
2, δ

′).
Now for every partial play in Ch(L) there is a partial play in G and for

every partial play in G there exists a corresponding partial play in G′. So we
can directly map each node of Ch(L) to the node in G′, where this partial
play ends. We call this mapping h and we show, that it is a homomorphism:

Let pk and pk+1 be two states in Ch(L) that are connected: δ(pk, a) =
pk+1. Then there is a partial play % = p0, . . . , pk, pk+1 in Ch(L). By ap-
plying g to each state, we obtain a partial play %′ = q0, . . . , qk, qk+1 in G,
because g is a homomorphism. By the game reduction to a weak parity
game, we obtain a partial play %′′ = r0, . . . , rk, rk+1 in G′ with h(pk) = rk

and h(pk+1) = rk+1. But this means δ′(h(pk), a) = h(pk+1).

Lemma 23. If Player 1 has a winning strategy in (G′, c) from r0, then
Player 1 has a (k + 1)-locally testable winning strategy in Ch(L).

Lemma 24. If Player 2 has a winning strategy in (G′, c) from r0, then
Player 2 has a k-locally testable winning strategy in Ch(L).

Since weak parity games are determined, either Player 1 or Player 2 has a
winning strategy in (G′, c) from r0. Then one can use Lemma 23 respectively
Lemma 24 to show, that the player who wins, has a (k + 1)-locally testable
winning strategy respectively a k-locally testable winning strategy (which is
again (k + 1)-locally testable).

Proof of Lemma 23. Let f1 : Q′
1 → Σ1 be a memoryless winning strategy for

Player 1 from q0 in (G′, c). For every a ∈ Σ1 define

Qa
1 :=

{
q ∈ Q1

∣∣ f1(q) = a
}

and
Sa :=

{
w ∈ P1

∣∣ h(w) ∈ Qa
1

}
.

Then clearly the sets Qa
1 are pairwise disjoint and cover Q1, while the

sets Sa are pairwise disjoint and cover P1. So (Sa)a∈Σ1 is a strategy for
Player 1.

We still have to show that (Sa)a∈Σ1 is winning for Player 1. Let % be
a play played according to (Sa)a∈Σ1 . We want Player 1 to win this play,
so we are going to show α := α(%) /∈ L. Like in the construction above,
we let % = p0, p1, . . . , %′ = q0, q1, . . . and %′′ = r0, r1, . . . be the sequence of
states of the corresponding plays. So p0 = ε ∈ P1, p1 ∈ P2, etc. Since % is
played according to (Sa)a∈Σ1 , for every even i ∈ N there is an a ∈ Σ1 and
a w ∈ P1 such that pi = w, pi+1 = w

(
a
∗
)
. Then clearly w ∈ Sa and by the

definition of Sa and Qa
1 we obtain h(w) ∈ Qa

1 and f1(h(w)) = a. So %′′ is
played according to f1. But f1 was a winning strategy for Player 1 from r0,
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so Player 1 wins %′′. Then Player 1 also wins the corresponding play %′ in
G, so for all i ∈ {1, . . . ,m} holds Fi 6= Occ(%′). Then by definition of the
set Fi, the set of prefixes and factors of α(%) is not equal to any of the sets
of prefixes and factors of αi and thus Player 1 wins % in Ch(L). So (Sa)a∈Σ1

is indeed winning for Player 1.
For w1, w2 ∈ P1, we show: if w1 ∼k+1 w2 then w1 ∈ Sa ⇔ w2 ∈ Sa. Let

w1 ∼k+1 w2. Then

Infixk(w1) = Infixk(w2),
Prefixk−1(w1) = Prefixk−1(w2),

Suffixk(w1) = Suffixk(w2).

The state h(w1) has the form h(w1) = (v,AR) where v is the k-suffix of
w1 (or w2) and AR is the appearance record of the k-suffixes seen so far,
which means

AR =
{
w ∈ Q1

∣∣ w ∈ Prefixk−1(w1)
}

∪
{
w

(
a
∗
)
∈ Q2

∣∣ ∃x ∈ Σ2 : w
(
a
x

)
∈ Prefixk−1(w1)

}
∪

{
w ∈ Q1

∣∣ w ∈ Infixk(w1), |w| = k
}

∪
{
w

(
a
∗
)
∈ Q2

∣∣ ∃x ∈ Σ2 : w
(
a
x

)
∈ Infixk(w1), |w

(
a
∗
)
| = k

}
.

This set AR is the same for w1 and w2.
So h(w1) = h(w2) and thus w1 ∈ Sa ⇔ w2 ∈ Sa. This means, Sa is as a

union of ∼k+1-classes (k + 1)-locally testable for every a ∈ Σ1.
So (Sa)a∈Σ1 is a (k + 1)-locally testable winning strategy.

Proof of Lemma 24. Let f2 : Q′
2 → Σ2 be a memoryless winning strategy for

Player 2 from q0 in (G′, c). For every x ∈ Σ2 define

Qx
2 :=

{
q ∈ Q2

∣∣ f2(q) = x
}

and
Tx :=

{
w ∈ P2

∣∣ h(w) ∈ Qx
2

}
.

Then clearly the sets Qx
2 are pairwise disjoint and cover Q2, while the

sets Tx are pairwise disjoint and cover P2. So (Tx)x∈Σ2 is a strategy for
Player 2.

We show that (Tx)x∈Σ2 is winning for Player 2. Let % be a play played
according to (Tx)x∈Σ2 . We want Player 2 to win this play, so we are going
to show α := α(%) ∈ L. Like above, we let % = p0, p1, . . . , %′ = q0, q1, . . .
and %′′ = r0, r1, . . . be the sequence of states of the corresponding plays. So
p0 = ε ∈ P1, p1 ∈ P2, etc. For every odd i ∈ N there is an a ∈ Σ1, an
x ∈ Σ2 and a w ∈ P1 such that %i = w

(
a
∗
)
, %i+1 = w

(
a
x

)
. Since % is played

according to (Tx)x∈Σ2 , clearly w
(
a
∗
)
∈ Tx and by the definition of Tx and

Qx
2 we obtain h(w) ∈ Qx

2 and f2(h(w)) = x. So %′′ is played according to
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f2. But f2 was a winning strategy for Player 2 from r0, so Player 2 wins
%′′. Then Player 2 also wins the corresponding play %′ in G, so there exists
an i ∈ {1, . . . ,m} with Fi = Occ(%′). Then by definition of the set Fi, the
set of prefixes and factors of α(%) is equal to the set of prefixes and factors
of αi and thus Player 2 wins % in Ch(L). So (Tx)x∈Σ2 is indeed winning for
Player 2.

For w1, w2 ∈ P2, we show: if w1 ∼k w2 then w1 ∈ Tx ⇔ w2 ∈ Tx. Let
w1 ∼k w2. Then

Infixk(w1) = Infixk(w2),
Prefixk−1(w1) = Prefixk−1(w2).

The state h(w1) has the form h(w1) = (v,AR) where v is the k-suffix of
w1 and AR is the appearance record of the k-suffixes seen so far (including
all the suffixes, which end with

(
a
∗
)
), which means

AR =
{
w ∈ Q1

∣∣ w ∈ Prefixk−1(w1)
}

∪
{
w

(
a
∗
)
∈ Q2

∣∣ ∃x ∈ Σ2 : w
(
a
x

)
∈ Prefixk−1(w1)

}
∪

{
w ∈ Q1

∣∣ w ∈ Infixk(w1), |w| = k
}

∪
{
w

(
a
∗
)
∈ Q2

∣∣ ∃x ∈ Σ2 : w
(
a
x

)
∈ Infixk(w1), |w

(
a
∗
)
| = k

}
.

So h(w2) = (u, AR) where AR is the same as for h(w1) and u is the
k-suffix of w2. Since Infixk(w1) = Infixk(w2), we can extract the only factor
from Infixk(w1) (respectively Infixk(w2)), which ends in

(
a
∗
)

and obtain the
k-suffix of w1 (respectively w2). So u = v and thus w1 ∈ Tx ⇔ w2 ∈ Tx.
This means, Tx is as a union of ∼k classes k-locally testable for every x ∈ Σ2.

So (Tx)x∈Σ2 is a k-locally testable winning strategy.

3.3 Strongly Locally Testable Languages

In this section we will slightly modify the class of locally testable languages.
We want not only to reckon the set of factors that occur at all in a word, but
also on the set of factors that occur infinitely often. We call those languages
strongly locally testable.

One could possibly imagine that this extension of the locally testable
languages does not lead to weak games anymore. Weak games must not
rely on the set Inf(%) of states occurring infinitely often, so strongly locally
testable games should not be won by weak winning strategies.

Strongly Locally Testable ∗-Languages

Factors cannot occur infinitely often in a finite word. So for ∗-languages
holds: a ∗-language is strongly locally testable, if it is locally testable.
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Strongly Locally Testable ω-Languages

An ω-language is strongly locally testable, if one can test membership of a
word to this language by means of a finite table of prefixes and factors like
in the locally testable case and additionally by a finite table of infixes that
occur infinitely often.

Definition 25. We let

Infixω
k (α) :=

{
w ∈ Σ∗ ∣∣ |w| ≤ k,∀i ∈ N ∃u ∈ Σ∗, β ∈ Σω :

|u| > i, α = uwβ
}

be the set of infixes of length less than or equal to k, occurring infinitely
often in α.

For α, β ∈ Σω let

α ∼̂ω
k β :⇐⇒ Prefixk−1(α) = Prefixk−1(β)

∧ Infixk(α) = Infixk(β)
∧ Infixω

k (α) = Infixω
k (β).

A language L ⊆ Σω is called strongly k-locally testable, if it can be written
as a finite union of classes from Σω/∼̂ω

k :

L =
m⋃

i=1

[αi]b∼ω
k

A language L ⊆ Σω is called strongly locally testable, if it is strongly
k-locally testable for a certain k ∈ N.

Church’s Problem

Proposition 26. There are strongly locally testable games that do not have
locally testable winning strategies.

Proof. We give a strongly locally testable language, defining an instance of
Church’s Game. But the player winning this game will not have a locally
testable winning strategy.

Let Σ1 := {a, b} and Σ2 := {0, 1}. We set L ⊆ Σω to be the language
defined by

α ∈ L :⇐⇒ Infix1(α) ⊆
{(

a
0

)
,
(
b
0

)
,
(
b
1

)}
∧

(
b
0

)
∈ Infixω

1 (α) ↔
(
b
1

)
∈ Infixω

1 (α).

We basically stated only boolean combinations of conditions over the set
of infixes and the set of infixes occurring infinitely often. So it should be
clear that this language is strongly locally testable. However, the sceptical
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Word αi Infix1(αi) Infixω
1 (αi)

α1 =
[(

b
0

)(
b
1

)]ω {(
b
0

)
,
(
b
1

)} {(
b
0

)
,
(
b
1

)}
α2 =

(
a
0

)[(
b
0

)(
b
1

)]ω {(
a
0

)
,
(
b
0

)
,
(
b
1

)} {(
b
0

)
,
(
b
1

)}
α3 =

[(
a
0

)(
b
0

)(
b
1

)]ω {(
a
0

)
,
(
b
0

)
,
(
b
1

)} {(
a
0

)
,
(
b
0

)
,
(
b
1

)}
α4 =

(
a
0

)ω {(
a
0

)} {(
a
0

)}
α5 =

(
b
0

)(
a
0

)ω {(
a
0

)
,
(
b
0

)} {(
a
0

)}
α6 =

(
b
1

)(
a
0

)ω {(
a
0

)
,
(
b
1

)} {(
a
0

)}
α7 =

(
b
0

)(
b
1

)(
a
0

)ω {(
a
0

)
,
(
b
0

)
,
(
b
1

)} {(
a
0

)}

Table 3.1: The equivalence classes for L =
⋃7

i=1 [αi]b∼ω
k

together with their
infixes, occurring finitely and infinitely often.

reader may want to inspect Table 3.1 for a detailed definition of L in the
form L =

⋃m
i=1 [αi]b∼ω

k
.

In the first line of the above language specification, we forbid the symbol(
a
1

)
to occur in the infinite word α. So Player 2 (if she wants to win) will

never answer with a 1 when Player 1 provides an a. In the second line,
we say that either both

(
b
0

)
and

(
b
1

)
occur infinitely often in α, or none of

them. So if Player 1 states infinitely many letters b, then Player 2 needs to
alternately specify 0 and 1 as his output. In fact, this is already the winning
strategy for Player 2. Player 2 wins this game, if she plays as mentioned.

However, Player 2 has no locally testable winning strategy. Assume
(T0, T1) is a locally testable winning strategy for Player 2, say it is k-locally
testable. Then we let Player 1 choose (ak−1b)ω and consider % = %0, %1, . . .
to be the (unique) play which is played according to (T0, T1). Since Player 2
wins this game,

(
b
0

)
and

(
b
1

)
both occur in α. So Infix1(α) = {

(
a
0

)
,
(
b
0

)
,
(
b
1

)
}.

There is a point in time l from which onwards the set Infixk(%i) does not
change anymore, so ∀i ≥ l, i even: Infixk(%i) = Infixk(α). Then we look at
all the prefixes wi = ui

(
b
∗
)
, ui ∈ P1 with length at least l. Each of them

has the same sets Infixk(wi), Prefixk−1(wi) and Suffixk−1(wi). So they all
lie inside the same ∼k-class.

But then either all wi are in T0 or they are in T1. Assuming that they are
in T0 yields infinitely many

(
b
0

)
in α but only finitely many

(
b
1

)
. Assuming

that they are in T1 yields finitely many
(
b
0

)
in α but infinitely many

(
b
1

)
.

Both cases imply α /∈ L, which means that Player 1 wins the game. This
is a contradiction to the assumption that (T0, T1) is a winning strategy for
Player 2.
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3.4 Locally Threshold Testable Languages

The property of local testability describes languages by the presence or
absence of factors. So in principle one can count these factors from “0”
to “1 or more”. This concept is generalized by counting the factors not
alone up to 1, but up to an arbitrary threshold r and the corresponding
languages are called locally threshold testable languages.

It is known [Tho82] that locally threshold testable ∗-languages are ex-
actly those languages which are definable by first order logic formulae to-
gether with the successor function FO(S). The same holds for locally thresh-
old testable ω-languages.

Rabinovich and Thomas [RT07] already showed for KLtt being the class
of all FO(S) definable ∗-languages and LLtt being the corresponding class
of all FO(S) definable ω-languages, that each LLtt-definable game is de-
termined with KLtt-definable winning strategies. So each locally threshold
testable game is determined with locally threshold testable winning strate-
gies. In the following we will generalize this result for a hierarchy of sub-
classes of LLtt.

Locally Threshold Testable ∗-Languages

A ∗-language is locally threshold testable, if one can test membership of a
word to this language by means of a finite table of prefixes and suffixes and
counting the occurring factors up to a certain threshold.

Definition 27. For v ∈ Σ+ and w ∈ Σ∗ let

Fact(w, v) :=
∣∣{x ∈ Σ∗ ∣∣ ∃y ∈ Σ∗ : w = xvy

}∣∣
denote the number of times v occurs as a factor of w. The sets Prefixk(w)
and Suffixk(w) of infixes respectively suffixes of w of length ≤ k are defined
as in Section 3.2.

For every k, r ≥ 1, we define an equivalence relation on the words in Σ∗.
Let w1, w2 ∈ Σ∗. Then

w1 ≈k
r w2 :⇐⇒ ∀v ∈ Σ+, |v| ≤ k :

min{Fact(w1, v), r} = min{Fact(w2, v), r}
∧ Prefixk−1(w1) = Prefixk−1(w2)
∧ Suffixk−1(w1) = Suffixk−1(w2).

A language K ⊆ Σ∗ is called k-locally r-threshold testable, if it can be
written as a finite union of classes from Σ∗/≈k

r :

K =
m⋃

i=1

[wi]≈k
r
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A language K ⊆ Σ∗ is called locally threshold testable, if it is k-locally r-
threshold testable for certain k, r ≥ 1.

Remark. For r = 1 the factors can only be counted up to one occurrence. So
the k-locally 1-threshold testable languages are exactly the k-locally testable
languages that we addressed in Section 3.2.

Locally Threshold Testable ω-Languages

An ω-language is locally threshold testable, if one can test membership of
a word to this language by means of a finite table of prefixes and counting
the occurring factors up to a certain threshold.

Wilke [Wil93] showed that it is decidable whether a given regular ω-
language is locally threshold testable. In his work, locally threshold testable
ω-languages are also called “finitely locally threshold testable”.

Definition 28. For v ∈ Σ+ and α ∈ Σω let

Fact(α, v) :=
∣∣{x ∈ Σ∗ ∣∣ ∃β ∈ Σω : α = xvβ

}∣∣
denote the number of times v occurs as a factor of α. Note that Fact(α, v) =
∞ is possible. The sets Prefixk(α) and Suffixk(α) of infixes respectively
suffixes of α of length ≤ k are defined as in Section 3.2.

For every k, r ≥ 1, we define an equivalence relation on the words in Σω.
Let α, β ∈ Σω. Then

α ≈kω
r β :⇐⇒ ∀v ∈ Σ+|v| ≤ k :

min{Fact(α, v), r} = min{Fact(β, v), r}
∧ Prefixk−1(α) = Prefixk−1(β).

A language L ⊆ Σω is called k-locally r-threshold testable, if it can be
written as a finite union of classes from Σω/≈kω

r :

L =
m⋃

i=1

[αi]≈kω
r

A language L ⊆ Σω is called locally threshold testable, if it is k-locally r-
threshold testable for certain k, r ≥ 1.

Church’s Problem

Theorem 29. For every k, r ≥ 1, k-locally r-threshold testable games are
determined with k-locally r-threshold testable winning strategies.

This theorem also refines Theorem 22. For r = 1, we can conclude
that k-locally testable games are determined with k-locally testable winning
strategies.
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Proof. Let L ⊆ (Σ1 × Σ2)ω be an instance of Church’s Problem and let L
be k-locally r-threshold testable.

Then there are words α1, . . . , αm ∈ Σω with L =
⋃m

i=1 [αi]≈kω
r

.
We define a new weak parity game (G, c) together with its game arena

G and a coloring function c.
Only factors of length k are of interest, so let

M =
{
v ∈ P1

∣∣ 1 ≤ |v| ≤ k
}
.

A multiset is now a function f : M →
{
0, . . . , r

}
, mapping each word v of

length at most k to the number of occurrences of this word as a subword in
the current partial play. With rM we denote the set of all such multisets.
For any multiset f define the cardinality of f to be |f | =

∑
v∈M f(v) and

an operator “+” with f + {v1, . . . , vn} := f ′ where

f ′(v) :=

{
min{f(v) + 1, r}, if ∃1 ≤ i ≤ n : vi = v;
f(v), otherwise.

Q1 :=
{
(upre, f, usuf) ∈ P1 × rM × P1

∣∣ |upre| = |usuf| = k − 1
}

∪
{
w ∈ P1

∣∣ |w| ≤ k − 1
}
,

Q2 :=
{
(upre, f, usuf) ∈ P1 × rM × P2

∣∣ |upre| = k − 1, |usuf| = k
}

∪
{
w ∈ P2

∣∣ |w| ≤ k
}
.

Then Q := Q1 ∪Q2 is the set of nodes of the game arena.
For nodes from Q1, the transition function δ is defined by

δ(w, a) := w
(
a
∗
)

and
δ((upre, f, usuf), a) := (upre, f, usuf

(
a
∗
)
).

For nodes from Q2, it is

δ(w
(
a
∗
)
, x) := w

(
a
x

)
, if |w

(
a
∗
)
| ≤ k − 1

δ(
(
a
x

)
w

(
b
∗
)
, y) := (

(
a
x

)
w, f, w

(
b
y

)
) , if |

(
a
x

)
w

(
b
∗
)
| = k ≥ 2

with f(v) = min{Fact(
(
a
x

)
w

(
b
y

)
, v), r},

δ(
(
a
∗
)
, x) := (

(
a
x

)
, f,

(
a
x

)
) , if k = 1

with f(v) = min{Fact(
(
a
x

)
, v), r} and

δ((upre, f,
(
a
x

)
usuf

(
b
∗
)
), y) := (upre, f

′, usuf

(
b
y

)
)

with f ′ = f + Suffixk(
(
a
x

)
usuf

(
b
y

)
).
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In order to translate plays % ∈ (Σ1 × Σ2)ω into plays %′ ∈ Qω, we define
a function h : P → Q by letting

h(w) := w if |w| ≤ k − 1 or |w| = k, w ∈ P2

h(w) := (uk−1
pre , f, uk−1

suf ) if w ∈ P1, |w| ≥ k

h(w
(
a
∗
)
) := (uk−1

pre , f, uk−1
suf

(
a
∗
)
) else.

with uk−1
pre being the k − 1-prefix of w, uk−1

suf being the k − 1-suffix of w and
f counts the k-factors up to threshold r of the word w.

The function h is a homomorphism. We shall show this for the case that
w ∈ P2, |w| ≥ k + 1 and k ≥ 2:

Let w = u
(

b
y

)
v
(
a
∗
)

with |v| = k − 2 and let upre be the k − 1-prefix of w.
Then

δ(h(w), x) = δ(h(u
(

b
y

)
v
(
a
∗
)
), x)

= δ((upre, f,
(

b
y

)
v
(
a
∗
)
), x)

with f(m) = Fact(w,m) for every m ∈ M

= (upre, f
′, v

(
a
∗
)
)

with f ′ = f + Suffixk(
(

b
y

)
v
(
a
x

)
)

= h(u
(

b
y

)
v
(
a
x

)
)

= h(γ(u
(

b
y

)
v
(
a
∗
)
, x))

= h(γ(w, x)).

The other cases work analogously.
The acceptance component depends on the words α1, . . . , αm, which

make up the language L. It consists of the coloring function c : Q →{
0, . . . , 2r · (|(Σ1 × Σ2)|k+1 − 1)

}
. We map every node that is not of the

form (upre, f, usuf) to the color 0. For the other nodes we set

c((upre, f, usuf)) :=


2 · |f |, if ∃i ∈

{
1, . . . ,m

}
: upre is prefix of αi,

∀u ∈ M : f(u) = min{Fact(αi, u), r};
2 · |f | − 1, otherwise.

We set q0 = h(ε). To show that this construction indeed gives us the
desired result, we state the following lemmas.

Lemma 30. If Player 1 has a winning strategy in (G, c) from q0, then
Player 1 has a k-locally r-threshold testable winning strategy in Ch(L).

Lemma 31. If Player 2 has a winning strategy in (G, c) from q0, then
Player 2 has a k-locally r-threshold testable winning strategy in Ch(L).



3.4. LOCALLY THRESHOLD TESTABLE LANGUAGES 39

The game (G, c) is a weak parity game. Weak parity games are deter-
mined, so one of the players has a winning strategy from q0, which more-
over is memoryless. In the case that Player 1 has a winning strategy use
Lemma 30, in the other case use Lemma 31 to prove the result.

Proof of Lemma 30. Let f1 : Q1 → Σ1 be a memoryless winning strategy for
Player 1 from q0 in (G, c). For every a ∈ Σ1 define

Qa
1 :=

{
q ∈ Q1

∣∣ f1(q) = a
}

and
Sa :=

{
w ∈ P1

∣∣ h(w) ∈ Qa
1

}
.

Then clearly the sets Qa
1 are pairwise disjoint and cover Q1, while the

sets Sa are pairwise disjoint and cover P1. So (Sa)a∈Σ1 is a strategy for
Player 1.

We still have to show that (Sa)a∈Σ1 is winning for Player 1. Let % be
a play played according to (Sa)a∈Σ1 . We want Player 1 to win this play,
so we are going to show that α := α(%) is not in L. Let % = p0, p1, . . .
be the sequence of states of %. By applying h to every state, we obtain
a play %′ = q0, q1, . . . in (G, c). For every even i ∈ N there is an a ∈ Σ1

and a w ∈ P1 such that pi = w, pi+1 = w
(
a
∗
)
. Since % is played according

to (Sa)a∈Σ1 , clearly w ∈ Sa and by the definition of Sa and Qa
1 we obtain

h(w) ∈ Qa
1 and f1(h(w)) = a. So %′ is played according to f1. But f1 was a

winning strategy for Player 1 from q0, so Player 1 wins %′.
Then the maximal color C(%′) occurring in %′ is odd. At some point of

%′, this color d has to occur. Let j be the smallest index with c(qj) = d.
Then for all following nodes, the color stays at d, because the multiset f
cannot shrink during a play. But then the multiset f stays constant from j
onwards and so does upre. Then upre and f also describe the prefix and the
multiplicity of factors of α.

Since d is odd, there is no αi such that upre is prefix of αi and ∀u ∈
M : f(u) = min{Fact(αi, u), r}. So α /∈ L.

Let us show that each Sa is k-locally r-threshold testable. For w1, w2 ∈
P1, we show: if w1 ≈k

r w2 then w1 ∈ Sa ⇔ w2 ∈ Sa. Let w1 ≈k
r w2. Then

min{Fact(w1, v), r} = min{Fact(w2, v), r}
∧ Prefixk−1(w1) = Prefixk−1(w2)
∧ Suffixk−1(w1) = Suffixk−1(w2)

and so h(w1) = (upre, f, usuf) = h(w2) where upre is the longest word in
Prefixk−1(w1), usuf is the longest word in Suffixk−1(w1) and f is the function
with the property f(v) = min{Fact(w1, v), r} for every v ∈ M .

This means w1 ∈ Sa ⇔ w2 ∈ Sa and Sa is as a union of ≈k
r classes

k-locally r-threshold testable. So (Sa)a∈Σ is a k-locally r-threshold testable
winning strategy.
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Proof of Lemma 31. The proof essentially follows the one of Lemma 30.
Let f2 : Q2 → Σ be a memoryless winning strategy for Player 2 from q0

in (G, c). For every x ∈ Σ2 define

Qx
2 ={q ∈ Q2 | f2(q) = x} and

Tx ={w ∈ P2 | h(w) ∈ Qx
2}.

Then clearly the sets Qx
2 are pairwise disjoint and cover Q2, while the

sets Tx are pairwise disjoint and cover P2. So (Tx)x∈Σ2 is a strategy for
Player 2.

We still have to show that (Tx)x∈Σ2 is winning for Player 2. Let % be a
play played according to (Tx)x∈Σ2 . We want Player 2 to win this play, so we
are going to show that α := α(%) is in L. Let % = p0, p1, . . . be the sequence
of states of %. By applying h to every state, we obtain a play %′ = q0, q1, . . .
in (G, c). For every odd i ∈ N there is an a ∈ Σ1, an x ∈ Σ2 and a w ∈ P1

such that %i = w
(
a
∗
)
, %i+1 = w

(
a
x

)
. Since % is played according to (Tx)x∈Σ2 ,

clearly w ∈ Tx and by the definition of Tx and Qx
2 we obtain h(w) ∈ Qx

2 and
f2(h(w)) = x. So %′ is played according to f1. But f2 is a winning strategy
for Player 2 from q0, so Player 2 wins %′.

Then the maximal color C(%′) occurring in %′ is even. At some point of
%′, this color d has to occur. Let j be the smallest index with c(qj) = d.
Then for all following nodes, the color stays at d, because the multiset f
cannot shrink during a play. But then the multiset f stays constant from j
onwards and so does upre. Then upre and f also describe the prefix and the
multiplicity of factors of α.

Since d is even, there is an αi such that upre is prefix of αi and ∀u ∈
M : f(u) = min{Fact(αi, u), r}. So α ∈ L.

For w1, w2 ∈ P2, we show: if w1 ≈k
r w2 then w1 ∈ Tx ⇔ w2 ∈ Tx. Let

w1 ≈k
r w2. Then

min{Fact(w1, v), r} = min{Fact(w2, v), r}
∧ Prefixk−1(w1) = Prefixk−1(w2)
∧ Suffixk−1(w1) = Suffixk−1(w2)

and so h(w1) = (upre, f, usuf) = h(w2) where upre is the longest word in
Prefixk−1(w1), usuf is the longest factor of w1 that ends with a letter

(
a
∗
)

and
f is the function with f(v) = min{Fact(w1, v), r} for every v ∈ M .

This means w1 ∈ Tx ⇔ w2 ∈ Tx and Tx is as a union of ≈k
r classes k-

locally r-threshold testable. So (Tx)x∈Σ2 is a k-locally r-threshold testable
winning strategy.

3.5 Piecewise Testable Languages

In the case of piecewise testable languages, we no longer consider factors,
but so-called (scattered) subwords in order to decide whether a word belongs
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to the language. A subword is simply a subsequence of letters of a word such
that the order of these letters is preserved. For example abc is a subword of
adbbece. But abcd is not a subword of it.

Piecewise Testable ∗-Languages

Definition 32. A word u = a1 · · · an ∈ Σ∗ is called a subword of w ∈ Σ∗, if
there are w0, . . . , wn ∈ Σ∗, such that

w0a1w1 · · ·wn−1anwn = w.

For u ∈ Σ∗ we define the set

Subwordsk(u) :=
{
w ∈ Σ∗ ∣∣ |w| ≤ k, w is subword of u

}
and for M ⊆ Σ∗ we set

Subwordsk(M) :=
⋃

u∈M

Subwordsk(u).

For every k ≥ 0 let ∼k⊆ Σ∗×Σ∗ be the equivalence relation, defined by

u ∼k v :⇐⇒ Subwordsk(u) = Subwordsk(v).

A language K ⊆ Σ∗ is called k-piecewise testable, if it can be written as
a finite union of classes from Σ∗/∼k:

K =
m⋃

i=1

[wi]∼k

A language K ⊆ Σ∗ is called piecewise testable, if it is k-piecewise testable
for a certain k ∈ N.

Obviously for every w ∈ Σ∗, a ∈ Σ the equation

Subwordsk(Subwordsk(w) · a) = Subwordsk(w · a) (3.1)

holds. We will need this equation later on.

Example 33. The language K1 = a(a + b)∗ is locally testable. We have
already seen that in Section 3.2. But it is not piecewise testable. Assume it
is k-piecewise testable. Then the word (ab)k+1 has the same set of subwords
as (ba)k+1. So they must be equivalent, but (ab)k+1 ∈ K1 and (ba)k+1 /∈ K1.
This proves that K1 cannot be piecewise testable.

There are many different characterizations of the piecewise testable ∗-
languages, most of which have been found by Simon [Sim75]. Simon’s The-
orem [Pin86, Sim75] is a well-known characterization of these languages by
their syntactic monoids.
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Piecewise Testable ω-Languages

Definition 34. A word u = a1 · · · an ∈ Σ∗ is called a subword of α ∈ Σω, if
there are w0, . . . , wn−1 ∈ Σ∗ and β ∈ Σω, such that

w0a1w1 · · ·wn−1anβ = α.

For α ∈ Σω we define the set

Subwordsk(α) =
{
w ∈ Σ∗ ∣∣ w is subword of α ∧ |w| ≤ k

}
.

For every k ≥ 0 let ∼ω
k⊆ Σω×Σω be the equivalence relation, defined by

α ∼ω
k β :⇐⇒ Subwordsk(α) = Subwordsk(β).

A language L ⊆ Σω is called k-piecewise testable, if it can be written as
a finite union of classes from Σω/∼ω

k :

L =
m⋃

i=1

[αi]∼ω
k

A language L ⊆ Σω is called piecewise testable, if it is k-piecewise testable
for a certain k ∈ N.

Church’s Problem

Let us look at Church’s Problem for piecewise testable languages.

Theorem 35. For every k ∈ N, k-piecewise testable games are determined
with k-piecewise testable winning strategies.

Proof. Let L ⊆ (Σ1 × Σ2)ω be an instance of Church’s Problem and let L
be k-piecewise testable.

Then there are words α1, . . . , αm ∈ Σω with L =
⋃m

i=1 [αi]∼ω
k
.

We define a new weak parity game (G, c) together with its game arena
G and a coloring function c.

In each node of the game arena we store the set of subwords of length
≤ k which are already read. When a new letter a is read, then the set of
subwords is extended by all subwords which result from the original subwords
by appending the letter a to them.

So each node is a set of subwords of length ≤ k. The nodes of Player 1
only store subwords with letters

(
a
x

)
in them, while the nodes of Player 2

may end with a letter
(
a
∗
)
. We define

Q1 :=
{
M ∈ P(P1)

∣∣ ∃w ∈ P1 : Subwordsk(w) = M
}

and
Q2 :=

{
M ∈ P(P2)

∣∣ ∃w ∈ P2 : Subwordsk(w) = M
}
.
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Then Q := Q1 ∪Q2 is the set of nodes of the game arena.
So for every q ∈ Q there is a word wq ∈ P1∪P2 with Subwordsk(wq) = q.
We define the transition function δ as

δ : (Q1 × Σ1) ∪ (Q2 × Σ2) → Q

δ(M,a) := Subwordsk(M ·
(
a
∗
)
)

δ(M,x) :=
{
u ·

(
a
x

)
∈ P1

∣∣ u ·
(
a
∗
)
∈ M

}
∪ (M ∩ P1)

Note that δ(M,x) effectively is M with every ∗ substituted by x.
The game arena G = (Q1, Q2, δ) is now complete.
In order to translate plays % ∈ (Σ1 × Σ2)ω into plays %′ ∈ Qω, we define

a function h : P1 ∪ P2 → Q by letting

h(w) := Subwordsk(w)

for each w ∈ P1 ∪ P2.
The function h is a homomorphism in the sense that it respects the

transition function δ. This can be seen by observing the two following
equations.

h(γ(w, a)) = h(w
(
a
∗
)
)

= Subwordsk(w
(
a
∗
)
)

= Subwordsk(Subwordsk(w)
(
a
∗
)
) (Eq. 3.1)

= δ(Subwordsk(w), a)
= δ(h(w), a)

h(γ(w
(
a
∗
)
, x)) = h(w

(
a
x

)
)

= Subwordsk(w
(
a
x

)
)

= Subwordsk(w
(
a
x

)
) ∪ Subwordsk(w)

= Subwordsk(Subwordsk(w)
(
a
x

)
) ∪ Subwordsk(w) (Eq. 3.1)

=
{
u
(
a
x

)
∈ P1

∣∣ u
(
a
∗
)
∈ h(w

(
a
∗
)
)
}
∪ (h(w

(
a
∗
)
) ∩ P1)

= δ(Subwordsk(w
(
a
∗
)
), x)

= δ(h(w
(
a
∗
)
), x)

We equip the game arena G = (Q1, Q2, δ) with a coloring function
c : Q →

{
0, . . . , 2 · (|(Σ1 × Σ2)|k+1 − 1)

}
by letting

c(M) :=


0, if M ∈ Q2;
2 · |M |, if ∃i ∈

{
1, . . . ,m

}
: M = Subwordsk(αi);

2 · |M | − 1, otherwise

and therefore we obtain a weak parity game. Observe that all nodes of
Player 2 have color 0 and do not play any role in C(%). There is a designated



44 CHAPTER 3. SPECIAL REGULAR WINNING CONDITIONS

starting node q0 :=
{
ε
}
∈ Q1 for all plays. As we know from Theorem 8,

weak parity games are determined with positional winning strategies. This
result can be used to prove the following two lemmas.

Lemma 36. If Player 1 has a winning strategy in (G, c) from q0, then
Player 1 has a k-piecewise testable winning strategy in Ch(L).

Lemma 37. If Player 2 has a winning strategy in (G, c) from q0, then
Player 2 has a k-piecewise testable winning strategy in Ch(L).

Since weak parity games are determined, either Player 1 or Player 2
has a winning strategy in (G, c) from q0. Then one can use Lemma 36
respectively Lemma 37 to show, that the player who wins, has a k-piecewise
testable winning strategy.

Proof of Lemma 36. Let f1 : Q1 → Q be a positional winning strategy in
(G, c). For every a ∈ Σ1 define Qa

1 :=
{
q ∈ Q1

∣∣ f1(q) = δ(q, a)
}

to be the
set of nodes in which Player 1 chooses the letter a. Clearly the sets Qa

1 are
pairwise disjoint for a ∈ Σ1, each Qa

1 is finite and the union of these sets
covers Q1. Then for every a ∈ Σ1 the set

Sa :=
⋃

q∈Qa
1

[wq]∼k

is k-piecewise testable.
Let us show that (Sa)a∈Σ1 is really a strategy for Player 1. For every

w ∈ P1 we take a look at q′ := h(w). Let a ∈ Σ1 such that q′ ∈ Qa
1. Then

w ∈ [w]∼k
= [wq′ ]∼k

⊆
⋃

q∈Qa
1
[wq]∼k

. Assume w ∈ P1 is in the sets Sa

and Sb. Then w ∈ [wq1 ]∼k
∩ [wq2 ]∼k

for q1 ∈ Qa
1 and q2 ∈ Qb

1. But then
h(wq1) = h(wq2) and therefore Qa

1 = Qb
1 and Sa = Sb. So (Sa)a∈Σ1 is really

a strategy for Player 1.
Furthermore, for all a ∈ Σ1 and all w ∈ P1 the equivalence

w ∈ Sa ⇔ h(w) ∈ Qa
1 (3.2)

holds.
So (Sa)a∈Σ1 is a k-piecewise testable strategy. We still have to show

that (Sa)a∈Σ1 is winning for Player 1. Let % be a play played according
to (Sa)a∈Σ1 . We want Player 1 to win this play, so we are going to show
α := α(%) /∈ L. Let %0, %1, . . . be the sequence of prefixes of %. So %0 =
ε ∈ P1, %1 ∈ P2, etc. We apply h to every %i and obtain a sequence
%′ = h(%0), h(%1), . . . = q0, q1, . . . of states from Q. This sequence is a
play of (G, c), because h is a homomorphism. It holds h(%0) = q0.

Since % is played according to (Sa)a∈Σ1 , for every even i ∈ N there is an
a ∈ Σ1 and a w ∈ P1 such that %i = w, %i+1 = w ·

(
a
∗
)
. Then clearly w ∈ Sa

and with Equivalence (3.2) we obtain h(w) ∈ Qa
1. But then f1(h(w)) =

δ(h(w), a).
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Then we get

f1(qi) = f1(h(w))
= δ(h(w), a)
= h(w ·

(
a
∗
)
)

= h(%i+1)
= qi+1.

So %′ is played according to f1 and starts in q0, however f1 was a
winning strategy for Player 1 from q0, so Player 1 wins %′. That means
d := max(Occ(c(%′))) is odd. At some point of %′, this color d has to oc-
cur. The set of subwords for words from P1 can only grow as we proceed
through %, so for all even i ∈ N : h(%i) ⊆ h(%i+2). All colors occurring
before d are less than or equal to d, all colors occurring after d are d and
0 in alternation. According to the definition of c, this means that even-
tually the set of subwords for Player 1 does not change anymore, so there
is an l ∈ N, such that for all even j ≥ l : M := Subwordsk(%j). Since d
is odd, ¬∃i ∈

{
1, . . . ,m

}
: M = Subwordsk(αi) holds. So Subwordsk(α) =⋃

j∈N,j even Subwordsk(%j) = M and ∀i ∈
{
1, . . . ,m

}
: M 6= Subwordsk(αi).

This means α /∈ L.

Proof of Lemma 37. Let f2 : Q2 → Q be a positional winning strategy in
(G, c). For every x ∈ Σ2 define Qx

2 :=
{
q ∈ Q2

∣∣ f2(q) = δ(q, x)
}
. Please

note that here Qx
2 and Qy

2 may be not disjoint for distinct x, y ∈ Σ2. We
make them pairwise disjoint by arbitrarily assigning their intersection to
one of the sets. Then the union of all sets Qx

2 still covers Q2 and each Qx
2 is

finite. For every x ∈ Σ2 the set

Tx :=
⋃

q∈Qx
2

[wq]∼k

is k-piecewise testable.
Let us show that (Tx)x∈Σ2 is really a strategy for Player 2. For every

w ∈ P2 we take a look at q′ := h(w). Let x ∈ Σ2 such that q′ ∈ Qx
2 . Then

w ∈ [w]∼k
= [wq′ ]∼k

⊆
⋃

q∈Qx
2
[wq]∼k

. Assume w ∈ P2 is in the sets Tx

and Ty. Then w ∈ [wq1 ]∼k
∩ [wq2 ]∼k

for q1 ∈ Qx
2 and q2 ∈ Qy

2. But then
h(wq1) = h(wq2) and therefore Qx

2 = Qy
2 and Tx = Ty. So (Tx)x∈Σ2 is really

a strategy for Player 2.
Furthermore, for all x ∈ Σ2 and all w ∈ P2 the equivalence

w ∈ Tx ⇔ h(w) ∈ Qx
2 (3.3)

holds.
So (Tx)x∈Σ2 is a piecewise testable strategy. We still have to show

that (Tx)x∈Σ2 is winning for Player 2. Let % be a play played accord-
ing to (Tx)x∈Σ2 . We want Player 2 to win this play, so we are going to
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show α := α(%) ∈ L. Let %0, %1, . . . be the sequence of prefixes of %. So
%0 = ε ∈ P1, %1 ∈ P2, etc. We apply h to every %i and obtain a sequence
%′ = h(%0), h(%1), . . . = q0, q1, . . . of states from Q. This sequence is a play
of (G, c), because h is a homomorphism. It holds h(%0) = q0.

Since % is played according to (Tx)x∈Σ2 , for every odd i ∈ N there is an
a ∈ Σ1, an x ∈ Σ2 and a w ∈ P1 such that %i = w

(
a
∗
)
, %i+1 = w

(
a
x

)
. Then

clearly w
(
a
∗
)
∈ Tx and with Equivalence (3.3) we obtain h(w

(
a
∗
)
) ∈ Qx

2 ⇒
f2(h(w

(
a
∗
)
)) = δ(h(w

(
a
∗
)
), x).

Then we get

f2(qi) = f2(h(w ·
(
a
∗
)
))

= δ(h(w
(
a
∗
)
), x)

= h(w
(
a
x

)
)

= h(%i+1)
= qi+1.

So %′ is played according to f2 and starts in q0, however f2 was a
winning strategy for Player 2 from q0, so Player 2 wins %′. That means
d := max(Occ(c(%′))) is even. At some point of %′, this color d has to oc-
cur. The set of subwords for words from P1 can only grow as we proceed
through %, so for all even i ∈ N : h(%i) ⊆ h(%i+2). All colors occurring
before d are less than or equal to d, all colors occurring after d are d and
0 in alternation. According to the definition of c, this means that even-
tually the set of subwords for Player 1 does not change anymore, so there
is an l ∈ N, such that for all even j ≥ l : M := Subwordsk(%j). Since d
is even, ∃i ∈

{
1, . . . ,m

}
: M = Subwordsk(αi) holds. So Subwordsk(α) =⋃

j∈N,j even Subwordsk(%j) = M and ∃i ∈
{
1, . . . ,m

}
: M = Subwordsk(αi).

This means α ∈ L.

3.6 Piecewise Threshold Testable Languages

Piecewise Threshold Testable ∗-Languages

A ∗-language is piecewise threshold testable, if one can test membership of
a word to this language by counting the occurring subwords up to a certain
threshold.

Definition 38. An occurrence of a word v = b1 · · · bt of length t ≥ 1 in
another word w = a1 · · · an is a t-tuple (i1, . . . , it) of increasing positive
integers with it ≤ n and aij = bj for all 1 ≤ j ≤ t. In this context, ij is
called a position of the letter aij in the word w.

Now it is easy to specify the number of occurrences of v as a subword of
w. In the literature there are many different notations for this. In [CK96]
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the function that maps v on this number is also referred to as the spectrum
of w, in [Sal03] the number of occurrences of v in w is denoted |w|v, and
sometimes the notation

(
w
v

)
can be found. We shall call it Subw(w, v).

Definition 39. For v = v1, . . . , vl ∈ Σ+ and w ∈ Σ∗ let

Subw(w, v) :=
∣∣∣{(i1, . . . , it) ∈ Nt

∣∣ (i1, . . . , it) is an occurrence of v in w
}∣∣∣

denote the number of times v occurs as a subword of w.
For every k, r ≥ 1, we define an equivalence relation on the words from

Σ∗. Let w1, w2 ∈ Σ∗. Then

w1 ≈k
r w2 :⇐⇒ ∀u ∈ Σ+, |u| ≤ k :

min{Subw(w1, u), r} = min{Subw(w2, u), r}.

A language K ⊆ Σ∗ is called k-piecewise r-threshold testable, if it can be
written as a finite union of classes from Σ∗/≈k

r :

K =
m⋃

i=1

[wi]≈k
r

A language K ⊆ Σ∗ is called piecewise threshold testable, if it is k-
piecewise r-threshold testable for certain k, r ≥ 1.

Remark. For r = 1 the subwords can only be counted up to one occurrence.
So the k-piecewise 1-threshold testable languages are exactly the k-piecewise
testable languages that we addressed in Section 3.5.

Piecewise Threshold Testable ω-Languages

An ω-language is piecewise threshold testable, if one can test membership of
a word to this language by counting the occurring subwords up to a certain
threshold.

Definition 40. For v = v1, . . . , vl ∈ Σ+ and α ∈ Σω let

Subw(α, v) :=
∣∣∣{(i1, . . . , it) ∈ Nt

∣∣ (i1, . . . , it) is an occurrence of v in α
}∣∣∣

denote the number of times v occurs as a subword of α. Note that Subw(α, v) =
∞ is possible.

For every k ≥ 1, we define an equivalence relation on the words from
Σω. Let α, β ∈ Σω. Then

α ≈kω
r β :⇐⇒ ∀v ∈ Σ+, |v| ≤ k :

min{Subw(α, v), r} = min{Subw(α, v), r}.
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A language L ⊆ Σω is called k-piecewise r-threshold testable, if it can be
written as a finite union of classes from Σω/≈kω

r :

L =
m⋃

i=1

[αi]≈kω
r

A language L ⊆ Σω is called piecewise threshold testable, if it is k-
piecewise r-threshold testable for certain k, r ≥ 1.

Church’s Problem

When examining piecewise threshold testable languages in the context of
already known piecewise testable languages, one can strike on the idea of
describing multiple occurrences of one subword by a single occurrence of
another subword. For instance, instead of testing a word for two occurrences
of ab we can test whether aab or abb occurs at all.

So one can characterize the n-fold occurrence of a subword by a single
occurrence of another subword. If a word u occurs at least n times as a
subword of w, then there is an “intermediate” subword of w with length at
most |w|+n− 1 with n occurrences of u. The opposite direction also holds.
We state this formally in the following lemma.

Lemma 41. For every w ∈ Σ∗, u ∈ Σ+ and n ≥ 1 it holds

Subw(w, u) ≥ n ⇐⇒ ∃v ∈ Subwords|u|+n−1(w) : Subw(v, u) ≥ n.

Proof. The direction from right to left is easy. If v is a subword of w and
u occurs n times as a subword of v, then by the transitivity of the subword
relation, u occurs n times as a subword of w.

Let us now show the direction from left to right. For that, we will
construct a sequence of n distinct occurrences u1, . . . , un of u in w with the
following property. Every occurrence uk will have at most one position that
is not in the set of all positions gathered from the occurrences u1, . . . , uk−1.

Such being the case, the number of all positions in u1, . . . , un will be at
most |u|+

∑n
i=2 1 = |u|+ n− 1. Then the set of all these positions defines

a new subword v of length at most |u| + n − 1 where all the occurrences
u1, . . . , un of u in w also describe valid occurrences of u in v. This suffices
to prove the right statement.

Let us now construct u1, . . . , un.
For u1 we take an arbitrary occurrence of u in w.
For uk+1 with 1 ≤ k ≤ n − 1: Let Uk be the set of all occurrences of u

in w which are distinct from the occurrences u1, . . . , uk. Uk is not empty,
since Subw(w, u) ≥ n.
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Let us number the positions of the occurrences already used:

u1 = (i11, . . . , i1m)
u2 = (i21, . . . , i2m)

...
uk = (ik1, . . . , ikm)

For every u′ = (j1, . . . , jm) ∈ Uk, we denote the position jµ to be new, if
jµ 6= irs for all 1 ≤ r ≤ k and 1 ≤ s ≤ m. The number of new positions in
an occurrence u′ ∈ Uk is denoted by #new(u′).

We fix a u′ ∈ Uk with minimal number of new positions #new(u′).
If #new(u′) = 0 or #new(u′) = 1, we simply set uk+1 := u′. Then uk+1

has at most one position more than
{
u1, . . . , uk

}
and we are done.

Hence we assume that #new(u′) ≥ 2. Let jµ be the first new position in
u′ and consider

u1 = (i1, . . . , iµ, iµ+1, . . . , im) and
u′ = (j1, . . . , jµ, jµ+1, . . . , jm).

First case: jµ < iµ+1.
We set uk+1 := (j1, . . . , jµ, iµ+1, . . . , im). Then uk+1 is an occurrence of u in
w with exactly one new position, so we are done.

Second case: jµ ≥ iµ+1.
Then iµ < jµ+1. We set u′′ := (i1, . . . , iµ, jµ+1, . . . , jm). Then u′′ is an
occurrence of u in w with #new(u′′) = #new(u′)− 1. Furthermore, u′′ has
at least one new position, so u′′ ∈ Uk. But this contradicts our assumption
that #new(u′) was minimal.

For any finite set of occurrences (even in infinite words), we can always
give the very first position and the very last position, enclosing all other
positions between them. For subword occurrences in infinite words, we can
therefore apply the above lemma and obtain an equivalent for infinite words.

Corollary 42. For every α ∈ Σω, u ∈ Σ+ and n ≥ 1 it holds

Subw(α, u) ≥ n ⇐⇒ ∃v ∈ Subwords|u|+n−1(α) : Subw(v, u) ≥ n.

With this characterization of the n-fold occurrence of a subword, it is
easy to prove our initial proposition.

Proposition 43. For every k, r ≥ 1 and every k-piecewise r-threshold
testable language L ⊆ Σω, L is also (k + r − 1)-piecewise testable.

Proof. We show: The ∼ω
k+r−1-relation refines the ≈kω

r -relation (from Sec-
tion 3.5).
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Let α, β ∈ Σω with α 6≈kω
r β.

By definition it follows that there is a u ∈ Σ+ with |u| ≤ k and

min{Subw(α, u), r} 6= min{Subw(β, u), r}.

Without loss of generality, we assume

min{Subw(α, u), r} < min{Subw(β, u), r}

and set r′ := min{Subw(β, u), r}.

• Since min{Subw(α, u), r} < r′ ≤ r it follows Subw(α, u) < r′.
With Corollary 42 we conclude

¬∃v1 ∈ Subwords|u|+r′−1(α) : Subw(v1, u) ≥ r′.

Clearly, |u|+ r′ − 1 ≤ k + r − 1 and thus

¬∃v1 ∈ Subwordsk+r−1(α) : Subw(v1, u) ≥ r′.

• Since min{Subw(β, u), r} = r′ it follows Subw(β, u) ≥ r′.
With Corollary 42 we conclude

∃v2 ∈ Subwords|u|+r′−1(β) : Subw(v2, u) ≥ r′.

Clearly, |v2| ≤ |u|+ r′ − 1 ≤ k + r − 1 and thus

∃v2 ∈ Subwordsk+r−1(β) : Subw(v2, u) ≥ r′.

So there is a v2 ∈ Subwordsk+r−1(β) which is not in Subwordsk+r−1(α).
This means α 6∼ω

k+r−1 β.

Remark. Reducing the subword-length to k + r − 2 in Proposition 43 does
not work. Already for a simple case like k = 2, r = 1, one can certainly
not decide whether a subword of length two exists by only regarding the
subwords of length one.

Now we know, that piecewise threshold testable languages are always
piecewise testable. Therefore the class of piecewise threshold testable ω-
languages is equal to the class of piecewise testable ω-languages. So the
determinacy of piecewise threshold testable games follows from the results
about piecewise testable games with no additional effort.

Theorem 44. For every k, r ≥ 1, k-piecewise r-threshold testable games
are determined with (k + r − 1)-piecewise testable winning strategies.

Proof. Let L ⊆ (Σ1 × Σ2)ω be k-piecewise r-threshold testable. Then by
Proposition 43 it is also (k + r − 1)-piecewise testable and by Theorem 35
Church’s Game for L is determined with (k+r−1)-piecewise testable winning
strategies.
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However, we also want to examine whether such winning strategies are
k-piecewise r-threshold testable with the same k and r as in the premise of
this theorem. This is actually the case, as the following theorem shows.

Theorem 45. For every k, r ≥ 1, k-piecewise r-threshold testable games
are determined with k-piecewise r-threshold testable winning strategies.

Proof. Let L ⊆ (Σ1 × Σ2)ω be an instance of Church’s Problem and let L
be k-piecewise r-threshold testable.

Then there are words α1, . . . , αm ∈ Σω with L =
⋃m

i=1 [αi]≈kω
r

.
We define a new weak parity game (G, c) together with its game arena

G and a coloring function c.
Only subwords of length k are of interest, so let

M =
{
v ∈ P1

∣∣ 1 ≤ |v| ≤ k
}
.

A multiset is now a function f : M →
{
0, . . . , r

}
, mapping each word v of

length at most k to the number of occurrences of this word as a subword in
the current partial play. With rM we denote the set of all such multisets.
For any multiset f define the cardinality of f to be |f | =

∑
v∈M f(v) and

an operator “+” with f + {v1, . . . , vn} := f ′ where

f ′(v) :=

{
min{f(v) + 1, r}, if ∃1 ≤ i ≤ n : vi = v;
f(v), otherwise.

Let Q = Q1 ∪Q2 be the set of nodes of the game arena with

Q1 =
{
f

∣∣ f ∈ rM
}

Q2 =
{
(f, a)

∣∣ f ∈ rM , a ∈ Σ1

}
The transition function δ is defined by

δ(f, a) := (f, a)
δ((f, a), x) := f ′

where f ′ is the multiset obtained by

f ′ = f+
{(

a
x

)}
+

{
v
(
a
x

) ∣∣ v ∈ M,v < k, f(v) ≥ 1
}

+
{
v
(
a
x

) ∣∣ v ∈ M,v < k, f(v) ≥ 2
}

...
+

{
v
(
a
x

) ∣∣ v ∈ M,v < k, f(v) ≥ k − 1
}
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In order to translate plays % ∈ (Σ1 × Σ2)ω into plays %′ ∈ Qω, we define
a function h : P → Q by letting

h(w) := f

h(w
(
a
∗
)
) := (f, a)

with f(v) := min{Subw(w, v), r} for every v ∈ M .
The function h is a homomorphism in the sense that it respects the

transition function: For every w ∈ P1 it holds

h(γ(w, a)) = h(w
(
a
∗
)
)

= (f, a)
= δ(f, a)
= δ(h(w), a)

with f(v) = min{Subw(w, v), r}. For every w
(
a
∗
)
∈ P2 it holds

h(γ(w
(
a
∗
)
, x)) = h(w

(
a
x

)
)

= f ′

= δ((f, a), x)
= δ(h(w

(
a
∗
)
), x)

with f(v) = min{Subw(w, v), r} and f ′(v) = min{Subw(w
(
a
x

)
, v), r}.

Every play starts in q0 := h(ε).
The acceptance component depends on the words α1, . . . , αm, which

make up the language L. It consists of the coloring function c : Q →{
0, . . . , 2r · (|(Σ1 × Σ2)|k+1 − 1)

}
. We set

c(f) := c((f, a)) :=


2 · |f |, if ∃i ∈

{
1, . . . ,m

}
:

∀u ∈ M : f(u) = min{Subw((, α)i, u), r};
2 · |f | − 1, otherwise.

The game (G, c) is a weak parity game. We know from Theorem 8 that
it is determined and that the winning player has a memoryless winning
strategy.

Lemma 46. If Player 1 has a winning strategy in (G, c) from q0, then
Player 1 has a k-piecewise r-threshold testable winning strategy in Ch(L).

Lemma 47. If Player 2 has a winning strategy in (G, c) from q0, then
Player 2 has a k-piecewise r-threshold testable winning strategy in Ch(L).

The game (G, c) is a weak parity game. Weak parity games are deter-
mined, so one of the players has a winning strategy from q0, which more-
over is memoryless. In the case that Player 1 has a winning strategy use
Lemma 46, in the other case use Lemma 47 to prove the result.
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Proof of Lemma 46. Let f1 : Q → Σ be a memoryless winning strategy for
Player 1 from q0 in (G, c). For every a ∈ Σ define

Qa
1 :=

{
q ∈ Q1

∣∣ f1(q) = a
}

and
Sa :=

{
w ∈ P1

∣∣ h(w) ∈ Qa
1

}
.

Then clearly the sets Qa
1 are pairwise disjoint and cover Q1, while the

sets Sa are pairwise disjoint and cover P1. So (Sa)a∈Σ1 is a strategy for
Player 1.

We still have to show that (Sa)a∈Σ1 is winning for Player 1. Let % be
a play played according to (Sa)a∈Σ1 . We want Player 1 to win this play,
so we are going to show that α := α(%) is not in L. Let % = p0, p1, . . . be
the sequence of states of %. By applying h to every state, we obtain a play
%′ = q0, q1, . . . in (G, c). Analogously to the proofs above, we obtain that
Player 1 wins %′.

Then the maximal color C(%′) occurring in %′ is odd. At some point of
%′, this color d has to occur. Let j be the smallest index with c(qj) = d.
Then for all following nodes, the color stays at d, because the multiset f
cannot shrink during a play. But then the multiset f stays constant from
j onwards. So f not only describes the multiplicity of subwords of these
partial plays but also the multiplicity of subwords of α.

Since d is odd, there is no αi with ∀u ∈ M : f(u) = min{Subw(αi, u), r}.
So α /∈ L.

Let us show that each Sa is k-piecewise r-threshold testable. For w1, w2 ∈
P1, we show: if w1 ≈k

r w2 then w1 ∈ Sa ⇔ w2 ∈ Sa. Let w1 ≈k
r w2. Then

min{Subw(w1, v), r} = min{Subw(w2, v), r}

and so h(w1) = f with f(v) = min{Subw(w1, v), r} = min{Subw(w2, v), r}
for every v ∈ M and so h(w2) = h(w1).

This means w1 ∈ Sa ⇔ w2 ∈ Sa and Sa is as a union of ≈k
r classes

k-piecewise r-threshold testable. So (Sa)a∈Σ1 is a k-piecewise r-threshold
testable winning strategy.

Proof of Lemma 47. Let f2 : Q → Σ be a memoryless winning strategy for
Player 2 from q0 in (G, c). For every a ∈ Σ define

Qx
2 :=

{
q ∈ Q2

∣∣ f2(q) = x
}

and
Tx :=

{
w ∈ P2

∣∣ h(w) ∈ Qx
2

}
.

Then clearly the sets Qx
2 are pairwise disjoint and cover Q2, while the

sets Ta are pairwise disjoint and cover P2. So (Tx)x∈Σ2 is a strategy for
Player 2.

We still have to show that (Tx)x∈Σ2 is winning for Player 2. Let % be a
play played according to (Tx)x∈Σ2 . We want Player 2 to win this play, so we
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are going to show that α := α(%) is in L. Let % = p0, p1, . . . be the sequence
of states of %. By applying h to every state, we obtain a play %′ = q0, q1, . . .
in (G, c). Analogously to the proofs above, we obtain that Player 2 wins %′.

Then the maximal color C(%′) occurring in %′ is even. At some point of
%′, this color d has to occur. Let j be the smallest index with c(qj) = d.
Then for all following nodes, the color stays at d, because the multiset f
cannot shrink during a play. But then the multiset f stays constant from
j onwards. So f not only describes the multiplicity of subwords of these
partial plays but also the multiplicity of subwords of α.

Since d is even, there is an αi with ∀u ∈ M : f(u) = min{Subw(αi, u), r}.
So α ∈ L.

Let us show that each Tx is k-piecewise r-threshold testable. For w1, w2 ∈
P2, we show: if w1 ≈k

r w2 then w1 ∈ Sa ⇔ w2 ∈ Sa. Let w1 ≈k
r w2. Then

min{Subw(w1, v), r} = min{Subw(w2, v), r}.

Let w1 = u1

(
a
∗
)

and w2 = u2

(
b
∗
)
. Then h(w1) = (f, a) with f(v) =

min{Subw(u1, v), r} for every v ∈ M and h(w2) = (g, b) with g(v) =
min{Subw(u2, v), r} for every v ∈ M . But since

(
a
∗
)

is the only subword
of w1 of length 1 which has a ∗ in its second component and

(
b
∗
)

is the only
subword of w2 of length 1 which has a ∗ in its second component, it holds
a = b. Furthermore the letter ∗ does not appear in any of the words v ∈ M ,
so

min
{
Subw(u1, v), r

}
= min

{
Subw(w1, v), r

}
= min

{
Subw(w2, v), r

}
= min

{
Subw(u2, v), r

}
for every v ∈ M and this means, f = g. So h(w2) = h(w1).

This means w1 ∈ Tx ⇔ w2 ∈ Tx and Tx is as a union of ≈k
r classes

k-piecewise r-threshold testable. So (Tx)x∈Σ2 is a k-piecewise r-threshold
testable winning strategy.

3.7 Modulo Counting Languages

The content of this section is motivated by the idea to consider logics with
modulo counting quantifiers. Rabinovich and Thomas [RT07] show two
result for instances of Church’s Problem which are defined by logics with
modulo counting quantifiers. The logics they consider are FO(<)+MOD
and FO(S)+MOD.

These are first order logics together with a new quantifier ∃(q,r). The
common semantics of this quantifier is this: ∃(q,r)xϕ(x) is fulfilled, iff there
are exactly n positions x in the word model that satisfy ϕ(x) and for the
number of positions holds n ≡ r (mod q). The classes of ∗-languages which
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can be defined by these logics are extensively treated in the book by Straub-
ing [Str94].

There is also a not so common semantics for the ∃(q,r) quantifier: The
formula ∃(q,r)xϕ(x) is fulfilled, iff there is a position x in the word model
that satisfies ϕ(x) and for this position holds x ≡ r (mod q).

Modulo Counting the Number of Positions

We have already mentioned in Section 3.4 that the class of FO(S)-definable
languages is equal to the class of locally threshold testable languages. Tak-
ing a look at the logic FO(S)+MOD, we see that the additional quantifier
properly expands the class of definable languages. For example the language
(ΣΣ)∗ of all even words can be expressed by counting modulo 2.

Example 48. Over the alphabet Σ = {a, b} the sentence

ϕ = ∃(2,0)x∃(2,1)yS(x, y)

describes the language (ΣΣ)∗ of all finite words of even length. Here, S(x, y)
means “y is the direct successor of x”. We do not need the usual existential
quantifier ∃ in this example.

However, Church’s Problem for this language class has already been
treated. The result obtained in [RT07] is the following.

Theorem 49. There are FO(S)+MOD-definable games that do not have
FO(S)+MOD-definable winning strategies.

Modulo Counting the Position

Let us consider the second interpretation of the ∃(q,r) quantifier. The formula
∃(q,r)xϕ(x) is fulfilled, iff there is a position x in the word model that satisfies
ϕ(x) and x ≡ r (mod q).

Example 50. Over the alphabet Σ = {a, b} the sentence

ϕ = ∃(2,1)x¬∃yS(x, y)

describes the language ΣΣ(ΣΣ)∗ of all finite words of even length ≥ 2.
Again, S(x, y) means “y is the direct successor of x”.

With this new semantics one can for example express that a letter b
occurs at a position that is divisible by 3. Taking the logical successor
relation into account, we can also express that a whole factor occurs at a
position that is divisible by 3. We can even count the occurring factors up
to a threshold, but we cannot say if a factor occurs infinitely often in an
infinite word. This indicates that the class of ω-languages defined by this
logic describes weak ω-languages.
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How do we translate this semantics into the language theoretical frame-
work, that we used in all the other cases of this chapter? This requires a bit
of preliminary work. We first define a new set Factors(q,r)

k (w) which contains
all factors that begin at a position x ≡ r (mod q).

Definition 51.

Factors(q,r)
k (w) :=

{
u ∈ Σ∗ ∣∣ |u| ≤ k,∃v, x ∈ Σ∗ :

|v| ≡ r (mod q),
w = vux

}
Now we can again define a class of languages by means of an equivalence

relation.

Definition 52.

w1 ≈k
q w2 :⇐⇒ ∀1 ≤ r < q : Factors(q,r)

k (w1) = Factors(q,r)
k (w2)

∧ |w1| ≡ |w2| (mod q)
∧ Prefixk−1(w1) = Prefixk−1(w2)
∧ Suffixk−1(w1) = Suffixk−1(w2).

A language K ⊆ Σ∗ is called k-locally positional q-modulo testable, if it can
be written as a finite union of classes from Σ∗/≈k

q :

K =
m⋃

i=1

[wi]≈k
q

A language K ⊆ Σ∗ is called locally positional modulo testable, if it is k-
locally positional q-modulo testable for certain k, q ≥ 1.

Notice in the definition of the relation ≈k
q we require both words to have

the same length modulo q and the same suffix of length k−1. We need this in
the game Ch(L) for updating the set Factors(q,r)

k (w1). For the corresponding
ω-language this information is, of course, unavailable.

Definition 53.

α1 ≈kω
q α2 :⇐⇒ ∀1 ≤ r < q : Factors(q,r)

k (α1) = Factors(q,r)
k (α2)

∧ Prefixk−1(w1) = Prefixk−1(w2).

A language L ⊆ Σω is called k-locally positional q-modulo testable, if it can
be written as a finite union of classes from Σω/≈kω

q :

L =
m⋃

i=1

[wi]≈kω
q

A language L ⊆ Σω is called locally positional modulo testable, if it is k-
locally positional q-modulo testable for certain k, q ≥ 1.
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With the ∃(q,r) quantifier we can also count up to some threshold. The
locally positional modulo testable languages, that we defined above, do not
allow this.

Example 54. Over the alphabet Σ = {a, b} the sentence

ϕ = ∃(3,0)x∃(3,0)y(x 6= y ∧ Pa(x) ∧ Pa(y))

describes the language of all words that contain at least 2 occurrences of
the letter a at positions that are divisible by 3. For instance, this formula
is satisfied by the infinite word

α = bbbabbabω.

But the language defined by ϕ is not locally positional modulo testable.

Church’s Problem

Theorem 55. For every k, q ∈ N, k-locally positional q-modulo testable
games are determined with k-locally positional q-modulo testable winning
strategies.

Proof. Let L ⊆ (Σ1 × Σ2)ω be an instance of Church’s Problem and let L
be k-locally positional q-modulo testable.

Then there are words α1, . . . , αm ∈ Σω with L =
⋃m

i=1 [αi]≈kω
q

.
We define a new weak parity game (G, c) together with its game arena G

and a coloring function c. For each pair (q, r) with 0 ≤ r < q we have to ac-
cumulate the set Factors(q,r)

k (·) of already seen factors. This is accomplished
by a mapping

g :
{
0, . . . , q − 1

}
→ P(M) with

M =
{
v ∈ P1

∣∣ 1 ≤ |v| ≤ k
}
.

With r denote the set of all integers {0, . . . , r} up to r. Then the set P(M)r

of all such mappings g is finite. For any mapping g define the cardinality of
g to be |f | =

∑
s∈q−1 g(s).

Let Q = Q1 ∪Q2 be the set of nodes of the game arena with

Q1 :=
{
(upre, g, usuf, r) ∈ P1 × P(M)r × P1 × q − 1

∣∣
|upre| = |usuf| = k − 1

}
∪

{
w ∈ P1

∣∣ |w| ≤ k − 1
}
,

Q2 :=
{
(upre, g, usuf, r) ∈ P1 × P(M)r × P2 × q − 1

∣∣
|upre| = k − 1, |usuf| = k

}
∪

{
w ∈ P2

∣∣ |w| ≤ k
}
.
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For nodes from Q1, the transition function δ is defined by

δ(w, a) := w
(
a
∗
)

and
δ((upre, g, usuf, r), a) := (upre, g, usuf

(
a
∗
)
, r).

For nodes from Q2, it is

δ(w
(
a
∗
)
, x) := w

(
a
x

)
, if |w

(
a
∗
)
| ≤ k − 1

δ(
(
a
x

)
w

(
b
∗
)
, y) := (

(
a
x

)
w, g, w

(
b
y

)
, 0) , if |

(
a
x

)
w

(
b
∗
)
| = k ≥ 2

with g(s) = Prefixk(
(
a
x

)
w

(
b
y

)
),

δ(
(
a
∗
)
, x) := (

(
a
x

)
, g,

(
a
x

)
, 0) , if k = 1

with g(s) =

{
{
(
a
x

)
}, if s = 0;

∅, otherwise;

δ((upre, g,
(
a
x

)
usuf

(
b
∗
)
), r) := (upre, g

′, usuf

(
b
y

)
, r′)

with r′ = r + 1 mod q and

g′(s) =

{
g(s) ∪ Prefixk(

(
a
x

)
usuf

(
b
y

)
), if s = r′;

g(s), otherwise.
In order to translate plays % ∈ (Σ1 × Σ2)ω into plays %′ ∈ Qω, we define

a function h : P → Q by letting

h(w) := w if |w| ≤ k − 1 or |w| = k, w ∈ P2

h(w) := (uk−1
pre , g, uk−1

suf , r) if w ∈ P1, |w| ≥ k

h(w
(
a
∗
)
) := (uk−1

pre , g, uk−1
suf

(
a
∗
)
, r) else.

with uk−1
pre being the k − 1-prefix of w, uk−1

suf being the k − 1-suffix of w,
r = (|w| − k) mod q and g(s) contains the k-factors of all positions x with
x ≡ s (mod q) of the word w. Then h is a homomorphism.

The acceptance component depends on the words α1, . . . , αm, which
make up the language L. It consists of the coloring function c : Q →{
0, . . . , q · (|(Σ1 × Σ2)|k+1 − 1)

}
. We map every node that is not of the

form (upre, g, usuf, r) to the color 0. For the other nodes we set

c((upre, g, usuf, r)) :=


2 · |g|, if ∃i ∈

{
1, . . . ,m

}
: upre is prefix of αi,

∀s ∈ q − 1: g(s) = Factors(q,s)
k (αi);

2 · |g| − 1, otherwise.

We set q0 = h(ε). To show that this construction indeed gives us the
desired result, we state the following lemmas.
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Lemma 56. If Player 1 has a winning strategy in (G, c) from q0, then
Player 1 has a k-locally positional q-modulo testable winning strategy in
Ch(L).

Lemma 57. If Player 2 has a winning strategy in (G, c) from q0, then
Player 2 has a k-locally positional q-modulo testable winning strategy in
Ch(L).

The game (G, c) is a weak parity game. Weak parity games are deter-
mined, so one of the players has a winning strategy from q0, which more-
over is memoryless. In the case that Player 1 has a winning strategy use
Lemma 56, in the other case use Lemma 57 to prove the result.

Proof of Lemma 56. Let f1 : Q1 → Σ1 be a memoryless winning strategy for
Player 1 from q0 in (G, c). For every a ∈ Σ1 define

Qa
1 :=

{
q ∈ Q1

∣∣ f1(q) = a
}

and
Sa :=

{
w ∈ P1

∣∣ h(w) ∈ Qa
1

}
.

Then clearly the sets Qa
1 are pairwise disjoint and cover Q1, while the

sets Sa are pairwise disjoint and cover P1. So (Sa)a∈Σ1 is a strategy for
Player 1.

We still have to show that (Sa)a∈Σ1 is winning for Player 1. Let % be
a play played according to (Sa)a∈Σ1 . We want Player 1 to win this play,
so we are going to show that α := α(%) is not in L. Let % = p0, p1, . . .
be the sequence of states of %. By applying h to every state, we obtain
a play %′ = q0, q1, . . . in (G, c). For every even i ∈ N there is an a ∈ Σ1

and a w ∈ P1 such that pi = w, pi+1 = w
(
a
∗
)
. Since % is played according

to (Sa)a∈Σ1 , clearly w ∈ Sa and by the definition of Sa and Qa
1 we obtain

h(w) ∈ Qa
1 and f1(h(w)) = a. So %′ is played according to f1. But f1 was a

winning strategy for Player 1 from q0, so Player 1 wins %′.
Then the maximal color C(%′) occurring in %′ is odd. At some point of

%′, this color d has to occur. Let j be the smallest index with c(qj) = d.
Then for all following nodes, the color stays at d, because the cardinality of
the mapping g cannot decrease during a play. But then the mapping g stays
constant from j onwards and so does upre. Then upre and g also describe
the prefix of α and the sets Factors(q,s)

k (α) for every s ∈ q − 1.
Since d is odd, there is no αi such that upre is prefix of αi and ∀r ∈

q − 1: f(r) = Factors(q,r)
k (αi). So α /∈ L.

Let us show that each Sa is k-locally positional q-modulo testable. For
w1, w2 ∈ P1, we show: if w1 ≈k

q w2 then w1 ∈ Sa ⇔ w2 ∈ Sa. Let w1 ≈k
q w2.
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Then

∀1 ≤ r < q : Factors(q,r)
k (w1) = Factors(q,r)

k (w2)
∧ |w1| ≡ |w2| (mod q)
∧ Prefixk−1(w1) = Prefixk−1(w2)
∧ Suffixk−1(w1) = Suffixk−1(w2)

and so h(w1) = (upre, g, usuf, r) = h(w2) where upre is the longest word in
Prefixk−1(w1), usuf is the longest word in Suffixk−1(w1), g is the function
with g(s) = Factors(q,s)

k (w1) for every s ∈ q − 1 and r = |w1| − k mod q.
This means w1 ∈ Sa ⇔ w2 ∈ Sa and Sa is as a union of ≈k

q classes
k-locally positional q-modulo testable. So (Sa)a∈Σ is a k-locally positional
q-modulo testable winning strategy.

Proof of Lemma 57. The proof essentially follows the one of Lemma 56.
Let f2 : Q2 → Σ be a memoryless winning strategy for Player 2 from q0

in (G, c). For every x ∈ Σ2 define

Qx
2 ={q ∈ Q2 | f2(q) = x} and

Tx ={w ∈ P2 | h(w) ∈ Qx
2}.

Then clearly the sets Qx
2 are pairwise disjoint and cover Q2, while the

sets Tx are pairwise disjoint and cover P2. So (Tx)x∈Σ2 is a strategy for
Player 2.

We still have to show that (Tx)x∈Σ2 is winning for Player 2. Let % be a
play played according to (Tx)x∈Σ2 . We want Player 2 to win this play, so we
are going to show that α := α(%) is in L. Let % = p0, p1, . . . be the sequence
of states of %. By applying h to every state, we obtain a play %′ = q0, q1, . . .
in (G, c). For every odd i ∈ N there is an a ∈ Σ1, an x ∈ Σ2 and a w ∈ P1

such that %i = w
(
a
∗
)
, %i+1 = w

(
a
x

)
. Since % is played according to (Tx)x∈Σ2 ,

clearly w ∈ Tx and by the definition of Tx and Qx
2 we obtain h(w) ∈ Qx

2 and
f2(h(w)) = x. So %′ is played according to f1. But f2 is a winning strategy
for Player 2 from q0, so Player 2 wins %′.

Then the maximal color C(%′) occurring in %′ is even. At some point of
%′, this color d has to occur. Let j be the smallest index with c(qj) = d.
Then for all following nodes, the color stays at d, because the cardinality of
the mapping g cannot decrease during a play. But then the mapping g stays
constant from j onwards and so does upre. Then upre and g also describe
the prefix of α and the sets Factors(q,s)

k (α) for every s ∈ q − 1.
Since d is even, there is an αi such that upre is prefix of αi and ∀r ∈

q − 1: f(r) = Factors(q,r)
k (αi). So α ∈ L.

For w1, w2 ∈ P2, we show: if w1 ≈k
q w2 then w1 ∈ Tx ⇔ w2 ∈ Tx. Let
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w1 ≈k
q w2. Then

∀1 ≤ r < q : Factors(q,r)
k (w1) = Factors(q,r)

k (w2)
∧ |w1| ≡ |w2| (mod q)
∧ Prefixk−1(w1) = Prefixk−1(w2)
∧ Suffixk−1(w1) = Suffixk−1(w2)

and so h(w1) = (upre, g, usuf, r) = h(w2) where upre is the longest word in
Prefixk−1(w1), usuf is the longest factor of w1 that ends with a letter

(
a
∗
)
, g is

the function with g(s) = Factors(q,s)
k (w) for w

(
a
∗
)

= w1 and every s ∈ q − 1
and r = |w1| − k mod q.

This means w1 ∈ Tx ⇔ w2 ∈ Tx and Tx is as a union of ≈k
q classes

k-locally positional q-modulo testable. So (Tx)x∈Σ2 is a k-locally positional
q-modulo testable winning strategy.
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Chapter 4

General Result

In the last chapter, we solved Church’s Problem for some well-known lan-
guage classes. In this chapter, we want to generalize these results. It would
be interesting to know a method that takes a class of ∗-languages K and
gives us a class of ω-languages LK, such that

LK-definable games are determined with K-definable winning strategies.

We concentrate on subclasses of the regular languages and for these sub-
classes, we present such a method. Based on a class of regular ∗-languages K

with certain closure properties, we will define a new class of weak regular ω-
languages Kw which consists of weak infinite counterparts of the languages
in K and their Boolean combinations.

4.1 Main Theorem

The proof idea for the results of Chapter 3 involves simulating a game by a
weak parity game. We have depicted this proof idea already in Section 3.1.
The games from Chapter 3 for which our idea works are all weak games.
But we have seen in the example of strongly locally testable games that it
does not perform with strong games. Therefore we concentrate only on weak
games.

Weak games are described by languages that are recognized by Staiger-
Wagner automata (cf. Section 2.5). These languages can also be constructed
by Boolean combinations of so-called A-recognizable languages. Those A-
recognizable languages are ω-languages which can be recognized by a finite
automaton in the following way. The automaton accepts all runs that always
stay in a set of accepting states. Equivalently we can say that every prefix
is a member of a certain regular language. This motivates the following
definition.

Let again v be the extended prefix relation from Definition 9. For ex-
ample it holds

(
a
∗
)
v

(
a
x

)(
a
y

)ω.

63
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Definition 58. For every ∗-language V let

V � =
{
α ∈ Σω

∣∣ ∀w v α : w ∈ V
}

and for every class of ∗-languages K, let Kw be the class of weak ω-languages
over K defined by

L ∈ Kw ⇐⇒ L is a Boolean combination of languages V �
i with Vi ∈ K.

Under which assumptions can we proceed from K to Kw, such that Kw-
definable games are determined with K-definable winning strategies? We
propose some suitable assumptions that will suffice to make the statement
true.

The Myhill-Nerode equivalence relation is commonly used in conjunction
with regular ∗-languages, for example for minimizing a finite automaton.
We are going to define an analogue for ω-languages. Although with this
analogue it is not possible to define an arbitrary regular ω-language, it still
suffices to define a weak regular ω-language.

Recall from Section 2.3 that P1 := (Σ1 × Σ2)∗ is the set of finite words
from which Player 1 has his next turn and P2 := (Σ1 × Σ2)∗(Σ1 × {∗}) is
the set of finite words where it is Player 2’s turn.

Definition 59. For every ω-language L ∈ Σω let ∼L⊆ (P1×P1)∪ (P2×P2)
be the “Myhill-Nerode” equivalence defined for every u, v ∈ P1 by

u ∼L v :⇐⇒ ∀β ∈ Σω : (uβ ∈ L ⇐⇒ vβ ∈ L)

and

u
(
a
∗
)
∼L v

(
b
∗
)

:⇐⇒ ∀x ∈ Σ2, β ∈ Σω :

(u
(
a
x

)
β ∈ L ⇐⇒ v

(
b
x

)
β ∈ L).

Definition 60. Let K be a class of ∗-languages. For every L ∈ Kw assume
that every class [u]∼L belongs to K. Furthermore, let K be closed under
finite intersections and finite unions. Then we call K adequate.

If we proceed from a class K of adequate regular ∗-languages to a class
Kw, then Kw-definable games are determined with K-definable winning
strategies. We will show this below by the familiar game simulation method.

Therefore it is necessary to know that the Myhill-Nerode classes do suf-
fice for building up a game graph with which we can simulate a game Ch(L)
for any L ∈ L. This is clarified by the following theorem.

Definition 61. For a game arena G = (Q1, Q2, δ) define the transitive
closure δ∗ inductively for q ∈ Q1 ∪Q2 and w ∈ P1 ∪ P2 by

δ∗(q, ε) = q,

δ∗(q, w
(
a
∗
)
) = δ(δ∗(q, w), a),

δ∗(q, w
(
a
x

)
) = δ(δ∗(q, w

(
a
∗
)
), x).
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Theorem 62. Let K be a class of adequate regular ∗-languages. Then for
every L ∈ Kw we can effectively construct a weak parity game (G, c) with
game arena G = (Q1, Q2, δ) and a designated initial node q0 ∈ Q1 such that

1. Q1 and Q2 are finite subsets of K,

2. for each K1,K2 ∈ Q with K1 6= K2 holds K1 ∩K2 = ∅,

3. for each w ∈ P1 ∪ P2 holds w ∈ δ∗(q0, w) and

4. for each play % holds: (Player 2 wins % in (G, c) ⇐⇒ α(%) ∈ L).

Proof. We prove an even stronger statement by induction, namely that we
can construct such a game graph with a monotonic coloring function. We say
a coloring function is monotonic, if in each possible play, the colors do not
decrease, so for each play % ∈ Qω and all i ∈ N it holds c(%(i)) ≤ c(%(i+1)).

Then the claim is that for every L ∈ Kw there is a weak parity game
(G, c) with game arena G = (Q1, Q2, δ) and a designated initial node q0 ∈ Q1

such that 1. – 4. are fulfilled and additionally

5. c is a monotonic coloring function.

The proof of this stronger statement is by induction on the structure of
the Boolean expression.

Induction basis: L = V � with V ∈ K

We define

• Q1 = P1/∼L, Q2 = P2/∼L,

• δ([w]∼L , a) = [w
(
a
∗
)
]∼L , δ([w

(
a
∗
)
]∼L , x) = [w

(
a
x

)
]∼L ,

• q0 = [ε]∼L and

• c : Q → {0, 1} by

c([w]) :=

{
0, if there is a β ∈ Σω s.t. wβ ∈ V �;
1, otherwise;

c([w
(
a
∗
)
]) :=

{
0, if there are x ∈ Σ2, β ∈ Σω s.t. w

(
a
x

)
β ∈ V �;

1, otherwise.

This is a well-defined function: Let [w1]∼L = [w2]∼L and let there be a
β ∈ Σω such that w1β ∈ V �. Since w1 ∼L w2, then w2β ∈ V �, too. The
same holds for equivalence classes [w

(
a
∗
)
].

Furthermore, c is monotonic. If there is an i ∈ N with c(%(i)) = 1,
then for any w ∈ %(i) (respectively w

(
a
∗
)
∈ %(i)) there is no continuation

β (respectively x and β) with wβ ∈ V � (respectively w
(
a
x

)
β ∈ V �), so all

successors must also have the color c(%(i + 1)) = 1.
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For any w ∈ P1 then holds δ∗(q0, w) = [w]∼L . So w ∈ δ∗(q0, w) and for
any w

(
a
∗
)
∈ P2 holds w

(
a
∗
)
∈ δ∗(q0, w

(
a
∗
)
).

For any K1,K2 ∈ Q with K1 6= K2 holds K1 ∩ K2 = ∅, because Q1 =
P1/∼L is a partition of P1, Q2 = P2/∼L is a partition of P2 and P1 and P2

are disjoint.
V is a regular ∗-language, so there is a finite automaton A with A =

(Q′,Σ, q′0, δ
′, F ), recognizing V . For two arbitrary words u, v ∈ P1 with

δ′∗(q′0, u) = δ′∗(q′0, v) it follows that u ∼L v. So Q1 is finite. But then, Q2

must also be finite.
Let α ∈ Σω and let % = q0, q1, . . . be the unique play of (G, c) on α.

Then it holds

Player 2 wins α in (G, c) ⇐⇒ ∀i : c(%(i)) = 0
⇐⇒ each prefix w v α is in V

⇐⇒ α ∈ V �.

So the claim holds for any V � with V ∈ K.
Induction step:
First case: L = L1 ∪ L2

By induction hypothesis there are deterministic weak parity games (G1, c1)
with G1 = (Q1

1, Q
1
2, δ1), initial node q1

0 ∈ Q1 and (G2, c2) with G2 =
(Q2

1, Q
2
2, δ2) and initial node q2

0 ∈ Q1 with the desired properties.
We construct a product game graph where the new nodes are inter-

sections of nodes of the originating game graphs. Define (G, c) with G =
(Q1, Q2, δ) by

• Q1 =
{
K1 ∩K2

∣∣ K1 ∈ Q1
1,K2 ∈ Q2

1,K1 ∩K2 6= ∅
}
,

• Q2 =
{
K1 ∩K2

∣∣ K1 ∈ Q1
2,K2 ∈ Q2

2,K1 ∩K2 6= ∅
}
,

• q0 = q1
0 ∩ q2

0,

• δ(K1 ∩K2, a) = K ′
1 ∩K ′

2 where δ1(K1, a) = K ′
1, δ2(K2, a) = K ′

2,

• δ(K1 ∩K2, x) = K ′
1 ∩K ′

2 where δ1(K1, x) = K ′
1, δ2(K2, x) = K ′

2 and

• c(K1 ∩K2) = c1(K1) · c2(K2).

This is indeed a well-defined deterministic weak parity game. The tran-
sition function δ is well-defined: For any state K ∈ Q there is only one
representation K = K1 ∩K2. Let K = K1 ∩K2 = K ′

1 ∩K ′
2. Then there is

a w ∈ K1 ∩K ′
1. But since K1 ∩K ′

1 = ∅ for K1 6= K ′
1 it must hold K1 = K ′

1.
Analogously for K2 and K ′

2.
The set Q is again finite and each K ∈ Q is a language from K, because

K is closed under finite intersections.
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If the coloring functions c1 and c2 have codomains {0, . . . ,m1} and
{0, . . . ,m2} then the new coloring function c also has a finite codomain,
namely {0, . . . ,m1 ·m2}.

By induction over the length of words one can verify that w ∈ δ∗(q0, w)
for each w ∈ P1 ∪ P2.

For K1 ∩K2 6= K ′
1 ∩K ′

2 there must hold K1 6= K ′
1 or K2 6= K ′

2. For the
former case, it holds K1 ∩K ′

1 = ∅, so (K1 ∩K2) ∩ (K ′
1 ∩K ′

2) = ∅, too.
The coloring function c is again monotonic, because multiplication is a

monotonic operator.
Let α ∈ Σω and let % = q0, q1, . . . be the unique play of (G, c) on α, %1 be

the unique play of (G1, c1) on α and %2 be the unique play of (G2, c2) on α.
Because c1, c2 and c are monotonic, there is a color d1 ∈ {0, . . . ,m1} which
is finally assumed in %1, a color d2 ∈ {0, . . . ,m2} which is finally assumed
in %2 and a color d = d1 · d2 which is finally assumed in %. Then it holds

Player 2 wins % in (G, c) ⇐⇒ d is even
⇐⇒ d1 is even or d2 is even
⇐⇒ Player 2 wins % in (G1, c1)

or Player 2 wins % in (G1, c1)
⇐⇒ α(%) ∈ L1 ∪ L2.

So the claim holds for L1 ∪ L2.
Second case: L = Σω \ L1

By induction hypothesis there is a deterministic weak parity game (G1, c1)
with G1 = (Q1

1, Q
1
2, δ1) and initial node q1

0 ∈ Q1 with the desired properties.
We preserve the game arena and just modify the coloring function. De-

fine the new game (G1, c) with a new coloring function c by

c : Q → {0, . . . ,m1 + 1}
c(q) := c1(q) + 1.

Then c is again monotonic and for every play % it holds

Player 2 wins % in (G1, c) ⇐⇒ Player 1 wins % in (G1, c1)
⇐⇒ α(%) ∈ Σω \ L1.

So the claim holds for Σω \ L1.

We are now able to present the general theorem.

Theorem 63. Let K be a class of adequate regular ∗-languages. Then every
game defined by L ∈ Kw is determined with winning strategies in K.

Moreover, the player who wins can be determined and the winning strat-
egy can be constructed effectively.



68 CHAPTER 4. GENERAL RESULT

Proof. Let L ∈ Kw be an instance of Church’s Problem. Then by Theo-
rem 62, there is a weak parity game (G, c) with game arena G = (Q1, Q2, δ)
and a designated initial node q0 ∈ Q1 such that items 1. – 4. are fulfilled.

We define a mapping h : P1 ∪ P2 → Q by

h(w) := δ∗(q0, w).

This mapping is a homomorphism, because for w ∈ P1, a ∈ Σ1 and x ∈ Σ2

it holds

δ(h(w), a) = δ(δ∗(q0, w), a)
= δ(q0, w

(
a
∗
)
)

= h(w
(
a
∗
)
)

= h(γ(w, a))

and

δ(h(w
(
a
∗
)
), x) = δ(δ∗(q0, w

(
a
∗
)
), x)

= δ(q0, w
(
a
x

)
)

= h(w
(
a
x

)
)

= h(γ(w
(
a
∗
)
, x)).

Since weak parity games are determined (Theorem 8), either Player 1 or
Player 2 has a winning strategy from q0 in (G, c).

First case: Player 1 has a winning strategy from q0. Then let f1 : Q1 →
Σ1 be a memoryless winning strategy for Player 1 from q0 in (G, c). For
every a ∈ Σ1 define

Qa
1 :=

{
q ∈ Q1

∣∣ f1(q) = a
}

and
Sa :=

{
w ∈ P1

∣∣ h(w) ∈ Qa
1

}
.

Then clearly the sets Qa
1 are pairwise disjoint and cover Q1, while the sets

Sa are pairwise disjoint and cover P1. So (Sa)a∈Σ1 is a strategy for Player 1.
We now show that (Sa)a∈Σ1 is winning for Player 1. Let % be a play

played according to (Sa)a∈Σ1 . We want Player 1 to win this play, so we are
going to show α := α(%) /∈ L. Let % = p0, p1, . . . be the sequence of states of
%. By applying h to every state, we obtain a play %′ = q0, q1, . . . in (G, c),
because h is a homomorphism. For every even i ∈ N there is an a ∈ Σ1

and a w ∈ P1 such that pi = w, pi+1 = w
(
a
∗
)
. Since % is played according

to (Sa)a∈Σ1 , clearly w ∈ Sa and by the definition of Sa and Qa
1 we obtain

h(w) ∈ Qa
1 and f1(h(w)) = a. So %′ is played according to f1. But f1 is

a winning strategy for Player 1 from q0, so Player 1 wins %′. By item 4.
it follows α /∈ L and (Sa)a∈Σ1 is indeed winning for Player 1 in the game
defined by L.
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Because of item 2. and 3., we can express Sa by

Sa =
⋃

K∈Qa
1

K.

Since each K ∈ Qa
1 is in K (item 1), Sa is a finite union of ∗-languages from

K. So (Sa)a∈Σ1 is a K-definable winning strategy.
Second case: Player 2 has a winning strategy from q0. Then let f2 : Q2 →

Σ2 be a memoryless winning strategy for Player 2 from q0 in (G, c). For every
x ∈ Σ2 define

Qx
2 :=

{
q ∈ Q2

∣∣ f2(q) = x
}

and
Tx :=

{
w ∈ P2

∣∣ h(w) ∈ Qx
2

}
.

Then clearly the sets Qx
2 are pairwise disjoint and cover Q2, while the sets

Ta are pairwise disjoint and cover P2. So (Tx)x∈Σ2 is a strategy for Player 2.
We show that (Tx)x∈Σ2 is winning for Player 2. Let % be a play played

according to (Tx)x∈Σ2 . We want player 2 to win this play, so we are going to
show α := α(%) ∈ L. Let % = p0, p1, . . . be the sequence of states of %. By
applying h to every state, we obtain a play %′ = q0, q1, . . . in (G, c), because
h is a homomorphism. For every odd i ∈ N there is an a ∈ Σ1, an x ∈ Σ2

and a w ∈ P1 such that %i = w
(
a
∗
)
, %i+1 = w

(
a
x

)
. Since % is played according

to (Tx)x∈Σ2 , clearly w
(
a
∗
)
∈ Tx and by the definition of Tx and Qx

2 we obtain
h(w) ∈ Qx

2 and f2(h(w)) = x. So %′ is played according to f2. But f1 is
a winning strategy for Player 2 from q0, so Player 2 wins %′. By item 4.
it follows α ∈ L and (Tx)x∈Σ2 is indeed winning for Player 2 in the game
defined by L.

Because of item 2. and 3., we can express Tx by

Tx =
⋃

K∈Qx
2

K.

Since each K ∈ Qx
2 is in K (item 1), Tx is a finite union of ∗-languages from

K. So (Tx)x∈Σ2 is a K-definable winning strategy.
Since the game arena is finite, the winning strategies in the game (G, c)

can be constructed effectively and so the winning strategies in Ch(L) can
be constructed effectively, too.

4.2 Applications and Examples

We now want to apply our general theorem to some example language
classes. At first, let us consider an example with finite classes of languages.
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Example 64. We consider the game with alphabets Σ1 = Σ2 = {0, 1},
Σ = Σ1 × Σ2 where Player 2 wins, iff there is the letter 1 anywhere in the
second component of the result of a play α. So

L = Σ∗(
(
0
1

)
+

(
1
1

)
)Σω.

See Table 4.1 and Table 4.2 to follow the construction of the language
classes K and Kw. L can be found as L2 in Table 4.2. We want to find
a class of adequate regular ∗-languages K, such that L ∈ Kw and we can
apply Theorem 63.

We need every ∼L-class to be in K. This results in the languages
K1, . . . ,K4 in Table 4.1. Now we take the closure of these four languages un-
der finite unions and finite intersections. This results in the other languages
K0 and K5, . . . ,K15.

Looking again at L, we see that L1 is obtained from K5 and L3 is ob-
tained from K15 by applying the �-operator. L0 and L2 are their comple-
ments. L is closed under Boolean combinations and each ∼Li-class is in K

for every Li ∈ L. So K is adequate and indeed L = Kw.
So we can apply Theorem 63 and get the result that every game defined

by a language Li ∈ Kw is determined with winning strategies in K.
In fact Player 2 has a winning strategy in Ch(L). For example she can

choose (T0, T1) = (K4,K2) or (T0, T1) = (K0,K9) as winning strategies.

We can also apply Theorem 63 on some of the language classes that we
examined in Chapter 3. To show that LK-definable games are determined
with K-definable winning strategies, we have to prove that K is a class of
adequate regular ∗-languages and that LK ⊆ Kw.

Example 65. Let K be the class of all locally testable ∗-languages (cf.
Section 3.2). Each locally testable language is regular, so K is a class of
regular ∗-languages. Thus, in order to apply Theorem 63 and get a result
similar to Theorem 22 we have to show two claims:

1. K is adequate,

2. every locally testable ω-language is in Kw (LK ⊆ Kw).

Proof. Let us first examine whether K is adequate. The class of locally
testable ∗-languages K is closed under finite intersections and finite unions.
So it remains to show that for every L ∈ Kw each class [u]∼L is locally
testable. Let L ∈ Kw. It suffices to show that the ∼k relation from Sec-
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name regular expression origin

K0 ∅ K1 ∩K2

K1 (
(
0
0

)
+

(
1
0

)
)∗ [ε]L

K2 (
(
0
0

)
+

(
1
0

)
)∗(

(
0
∗
)

+
(
1
∗
)
) [

(
0
∗
)
]L

K3 Σ∗(
(
0
1

)
+

(
1
1

)
)Σ∗ [

(
0
1

)
]L

K4 Σ∗(
(
0
1

)
+

(
1
1

)
)Σ∗(

(
0
∗
)

+
(
1
∗
)
) [

(
0
1

)(
0
∗
)
]L

K5 (
(
0
0

)
+

(
1
0

)
)∗(ε +

(
0
∗
)

+
(
1
∗
)
) K1 ∪K2

K6 Σ∗ K1 ∪K3

K7 (
(
0
0

)
+

(
1
0

)
)∗ + Σ∗(

(
0
1

)
+

(
1
1

)
)Σ∗(

(
0
∗
)

+
(
1
∗
)
) K1 ∪K4

K8 (
(
0
0

)
+

(
1
0

)
)∗(

(
0
∗
)

+
(
1
∗
)
) + Σ∗(

(
0
1

)
+

(
1
1

)
)Σ∗ K2 ∪K3

K9 Σ∗(
(
0
∗
)

+
(
1
∗
)
) K2 ∪K4

K10 Σ∗(
(
0
1

)
+

(
1
1

)
)Σ∗(ε +

(
0
∗
)

+
(
1
∗
)
) K3 ∪K4

K11 (
(
0
0

)
+

(
1
0

)
)∗(ε +

(
0
∗
)

+
(
1
∗
)
) + Σ∗(

(
0
1

)
+

(
1
1

)
)Σ∗ K1 ∪K2 ∪K3

K12 (
(
0
0

)
+

(
1
0

)
)∗(ε +

(
0
∗
)

+
(
1
∗
)
) + Σ∗(

(
0
1

)
+

(
1
1

)
)Σ∗(

(
0
∗
)

+
(
1
∗
)
) K1 ∪K2 ∪K4

K13 (
(
0
0

)
+

(
1
0

)
)∗ + Σ∗(

(
0
1

)
+

(
1
1

)
)Σ∗(ε +

(
0
∗
)

+
(
1
∗
)
) K1 ∪K3 ∪K4

K14 (
(
0
0

)
+

(
1
0

)
)∗(

(
0
∗
)

+
(
1
∗
)
) + Σ∗(

(
0
1

)
+

(
1
1

)
)Σ∗(ε +

(
0
∗
)

+
(
1
∗
)
) K2 ∪K3 ∪K4

K15 Σ∗(ε +
(
0
∗
)

+
(
1
∗
)
) K1 ∪ · · · ∪K4

Table 4.1: K = {K0, . . . ,K15} of Example 64

name regular expression origin

L0 ∅ L3

L1 (
(
0
0

)
+

(
1
0

)
)ω K�

5

L = L2 Σ∗(
(
0
1

)
+

(
1
1

)
)Σω L1

L3 Σω K�
15

Table 4.2: L = {L0, . . . , L3} of Example 64
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tion 3.2 refines the ∼L relation. For any two words u, v ∈ P1 it holds

u ∼k v ⇒ Infixk(u) = Infixk(v)
∧ Prefixk−1(u) = Prefixk−1(v)
∧ Suffixk−1(u) = Suffixk−1(v)

⇒ ∀β ∈ Σω : Infixk(uβ) = Infixk(vβ)
∧ Prefixk−1(uβ) = Prefixk−1(vβ)

⇒ ∀β ∈ Σω : (uβ ∈ L ⇐⇒ vβ ∈ L)
⇒ u ∼L v.

Analogously for u, v ∈ P2. So any [u]∼L class is the union of ∼k classes and
therefore locally testable. This implies that K is adequate.

We show that LK ⊆ Kw. Let L be a locally testable ω-language. Then
there is a k ∈ N such that

L =
m⋃

i=1

[αi]∼k
.

We look for Ui, Vi ∈ K such that

U�
i \ V �

i = [αi]∼k
,

because then L =
⋃m

i=1(U
�
i \V �

i ) and therefore L is a Boolean combination
of languages V � with V ∈ K and as such L ∈ Kw.

For every αi we define

Ui :=
{
w ∈ P1

∣∣ Prefixk−1(w) ⊆ Prefixk−1(αi)
∧ Infixk(w) ⊆ Infixk(αi)

}
∪

{
v
(
a
∗
)
∈ P2

∣∣ v ∈ P1, a ∈ Σ1

}
and

Vi :=
{
w ∈ P1

∣∣ Prefixk−1(w) 6= Prefixk−1(αi)
∨ Infixk(w) 6= Infixk(αi)

}
∪

{
v
(
a
∗
)
∈ P2

∣∣ v ∈ P1, a ∈ Σ1

}
.

Both Ui and Vi are locally testable, because they depend only on the set of
prefixes respectively factors of at most length k.

We still have to show U�
i \V �

i = [αi]∼k
. The first direction is U�

i \V �
i ⊆

[αi]∼k
. Let β ∈ U�

i \ V �
i . Since β /∈ V �

i , there is a w1 v β with w1 /∈ Vi.
From the definition of Vi it follows w1 ∈ P1 and

Prefixk−1(w1) = Prefixk−1(αi)
∧Infixk(w1) = Infixk(αi).
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Since β ∈ U�
i , for all w v β it holds

Prefixk−1(w) ⊆ Prefixk−1(αi)
∧Infixk(w) ⊆ Infixk(αi).

The set of prefixes and the set of factors can only grow as we proceed to
longer prefixes of β. So for each prefix w v β, w ∈ P1 with w1 being a prefix
of w these sets stay constant. So

Prefixk−1(w1) = Prefixk−1(αi) = Prefixk−1(β)
∧Infixk(w1) = Infixk(αi) = Infixk(β)

and β ∼k αi and therefore β ∈ [αi]∼k
.

We show the other direction [αi]∼k
⊆ U�

i \ V �
i . Let β ∈ [αi]∼k

. For
every prefix w v β, w ∈ P1 it holds

Prefixk−1(w) ⊆ Prefixk−1(αi)
∧Infixk(w) ⊆ Infixk(αi).

So for every w v β it holds w ∈ Ui and therefore β ∈ U�
i . There is a prefix

w2 v β with

Prefixk−1(w2) = Prefixk−1(αi)
∧Infixk(w2) = Infixk(αi).

So w2 /∈ Vi and therefore β /∈ V �
i . Altogether β ∈ U�

i \ V �
i and this proves

our proposition that LK ⊆ Kw.
The other inclusion direction does not hold as we will show in the fol-

lowing. We exhibit an ω-language that is in Kw but not locally testable.
Let Σ1 = {a}, Σ2 = {a, b, c} , k = 1 and let

V = [ε]∼k
∪ [

(
a
∗
)
]∼k

∪ [
(
a
a

)
]∼k

∪ [
(
a
a

)(
a
∗
)
]∼k

∪ [
(
a
a

)(
a
b

)
]∼k

∪ [
(
a
a

)(
a
b

)(
a
∗
)
]∼k

∪ [
(
a
a

)(
a
b

)(
a
c

)
]∼k

∪ [
(
a
a

)(
a
b

)(
a
c

)(
a
∗
)
]∼k

.

Then V � =
(
a
a

)(
a
a

)∗(a
b

)
(
(
a
a

)
+

(
a
b

)
)∗

(
a
c

)
(
(
a
a

)
+

(
a
b

)
+

(
a
c

)
)ω is the language of

all infinite words over Σ1×Σ2 starting with
(
a
a

)
and where

(
a
b

)
occurs before(

a
c

)
. V � is not locally testable. Assume it is k-locally testable. Then the

word
α :=

(
a
a

)k−1(a
b

)(
a
a

)k−1(a
c

)(
a
a

)ω

is in V � and
β :=

(
a
a

)k−1(a
c

)(
a
a

)k−1(a
b

)(
a
a

)ω

has the same factors of length k and the same prefix of length k − 1 as α.
So α ∼k β and β must be in V �, too. But in β

(
a
c

)
occurs before

(
a
b

)
, so

this is a contradiction to the definition of V �. Therefore Kw 6⊆ LK.
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K and Kw meet the conditions of Theorem 63. Then every game defined
by L ∈ Kw is determined with winning strategies in K. This means locally
testable games are determined with locally testable winning strategies.

We have seen that the length of the prefixes k grows when proceeding
from K to Kw. So the above example can only work, if we do not claim the
parameter k to stay constant.

Example 66. Let K be the class of all piecewise testable ∗-languages (cf.
Section 3.5). The general theorem is not applicable to K, because K is not
adequate. There is an L ∈ Kw and a word u such that [u]∼L is not piecewise
testable.

Let Σ1 = Σ2 = {a, b} , k = 1 and let

V = [ε]∼k
∪ [

(
a
∗
)
]∼k

∪ [
(
a
a

)
]∼k

∪ [
(
a
a

)(
b
∗
)
]∼k

∪ [
(
a
a

)(
a
∗
)
]∼k

∪[
(
a
a

)(
b
b

)
]∼k

∪ [
(
a
a

)(
b
b

)(
a
∗
)
]∼k

∪ [
(
a
a

)(
b
b

)(
b
∗
)
]∼k

.

Then set L = V � =
(
a
a

)
(
(
a
a

)
+

(
b
b

)
)ω. Compare this with Example 33. L is

not piecewise testable. For u =
(
a
a

)
the class [u]∼L is

(
a
a

)
(
(
a
a

)
+

(
b
b

)
)∗, which

is not piecewise testable. So [u]∼L does not belong to K and therefore K is
not adequate.

The last example fails, because the �-operator can be used to express
bounded prefixes of words, but piecewise testable languages do not dis-
tinguish between different prefixes. If we would change the definition of
piecewise testable languages and also regard prefixes in it, then we expect
the general theorem to work. We conclude that it also works with locally
threshold testable languages, but not with modulo counting languages.

We know that piecewise testable games are determined with piecewise
testable winning strategies. So an obvious idea to make Example 66 work
would be to drop the requirement that every class [u]∼L belongs to K.
Instead one could demand K to be closed under complement, too. Let
Σ1 = Σ2 = {a, b} and

V := ε +
(
a
∗
)

+
(

a
Σ2

)
+

(
a

Σ2

)(
b
∗
)

+
(

a
Σ2

)(
b

Σ2

)
+

(
a

Σ2

)(
b

Σ2

)(
Σ1

∗
)∗

+
(

a
Σ2

)(
b

Σ2

)(
Σ1

Σ2

)∗
.

If we choose K = {V, V } then K is closed under Boolean combinations. We
get

V � =
(

a
Σ2

)(
b

Σ2

)(
Σ1

Σ2

)ω

and the game defined by L := V � is won by Player 1 iff the first two letters
of the first component are a and b. Clearly Player 1 has a winning strategy.
He just has to choose a in the first round and b in the second. But there is
no winning strategy in K as one can easily see.



Chapter 5

Conclusion

We investigated Church’s Problem for certain subclasses of regular lan-
guages. We showed that X-definable games are determined with X-definable
winning strategies, where X is the class of locally testable languages, respec-
tively piecewise testable languages. Moreover, k-locally r-threshold testable
games are determined with k-locally r-threshold testable winning strategies,
and k-piecewise r-threshold testable games are determined with k-piecewise
r-threshold testable winning strategies, with the same parameters k and r.
We considered two possibilities for logical modulo counting quantifiers and
generated the language class of locally positional modulo testable languages.
For this class we showed that k-locally positional q-modulo testable games
are determined with k-locally positional q-modulo testable winning strate-
gies. Then we found a general concept to proceed from a class of regular
∗-languages K to a class of weak ω-languages Kw, such that Kw-definable
games are determined with K-definable winning strategies.

By an excursion to combinatorics on words, we found out that each piece-
wise threshold testable language is also piecewise testable and we used this
result to state that k-piecewise r-threshold testable games are determined
with (k + r − 1)-piecewise testable winning strategies.

A natural question which arises is whether there are other types of games
for which these results hold. One could consider Gale-Stewart games where
the plays are represented by linear sequences of letters instead of sequences of
pairs of letters. Other examples are Banach-Mazur games (see e.g. [Mos80])
where the players pick integers or finite sequences of bits. If both players’
choices are restricted to the same alphabet, then winning conditions and
winning strategies can again be expressed by (tuples of) languages. Thus,
we should obtain similar results for these types of games.

The Büchi-Landweber Theorem and the results of Selivanov [Sel07] and
Rabinovich and Thomas [RT07] show that there are several strong games
for which the result holds. The question is, whether there is also a general
result for strong games: Can we conclude from a class of ∗-languages to a

75
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class of strong ω-languages?
Another possibility to extend the results of this work, is to consider not

only subclasses of regular languages, but also non-regular ones. The proof
idea would be the same. The only difference would consist in an infinite
graph of the weak parity game. Therefore, an effective construction of the
winning strategies would not follow directly anymore. However, determinacy
still holds, if the winning conditions are Borel, and winning strategies that
are of the same type as the winning conditions might still exist.

Considering the class of context-free languages, Walukiewicz [Wal01]
showed that the result at least holds for deterministic context-free languages.
It would be interesting to know whether it also holds for the general case of
context-free languages or for other subclasses of the context-free languages.
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regulärer folgenmengen, Elektronische Informationsverarbeitung
und Kybernetik 10 (1974), no. 7, 379–392.

[Tho82] Wolfgang Thomas, Classifying regular events in symbolic logic, J.
Comput. Syst. Sci. 25 (1982), no. 3, 360–376.



BIBLIOGRAPHY 79

[Tho95] , On the synthesis of strategies in infinite games, STACS,
1995, pp. 1–13.

[Tho08] , Church’s problem and a tour through automata theory,
Pillars of Computer Science (Arnon Avron, Nachum Dershowitz,
and Alexander Rabinovich, eds.), Lecture Notes in Computer Sci-
ence, vol. 4800, Springer, 2008, pp. 635–655.

[Wal01] Igor Walukiewicz, Pushdown processes: Games and model-
checking, Inf. Comput. 164 (2001), no. 2, 234–263.

[Wil91] Thomas Wilke, An Eilenberg theorem for infinity-languages,
ICALP (Javier Leach Albert, Burkhard Monien, and Mario
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