15. Theorietag Automaten und Formale Sprachen Lauterbad, 28–29 September 2005

On the Parikh Images of Level-Two Pushdown Automata

Wong Karianto

karianto@informatik.rwth-aachen.de

Lehrstuhl für Informatik VII

Automata theory

Number theory

finite automata, pushdown automata (Parikh mapping)

semi-linear sets

Automata theory		Number theory
finite automata, (Par pushdown automata	rikh mapping)	semi-linear sets
higher-order pushdown automata (HOPDA)		???

HOPDA: finite-state automata with *a stack of stacks of ... of stacks*

Automata theory	Number theory
finite automata, (Parikh mapping) pushdown automata	semi-linear sets
higher-order pushdown automata (HOPDA)	???

HOPDA: finite-state automata with *a stack of stacks of ... of stacks* In this talk: *HOPDA of level 2* (*2-PDA*)

Two questions for a class characterizing the Parikh images of 2-PDA's:

- Can all sets from this class be generated (via the Parikh mapping)?
- Does the Parikh image of each 2-PDA belong to this class?

- Semi-linear sets and Parikh's theorem
- Level 2 pushdown automata
- Semi-polynomial sets
- From semi-polynomial sets to 2-PDA's
- From 2-PDA's to semi-polynomial sets?
- Conclusions

Semi-Linear Sets

Semi-linear set: finite union of linear sets.

Example: $B := \{(x_1, x_2, x_3) \in \mathbb{N}^3 \mid x_1 < x_2 < x_3\}$ is linear:

 $\{(0,1,2) + k_1(0,0,1) + k_2(0,1,1) + k_3(1,1,1) \mid k_1, k_2, k_3 \in \mathbb{N}\}.$

Semi-Linear Sets

Semi-linear set: finite union of linear sets.

Example: $B := \{(x_1, x_2, x_3) \in \mathbb{N}^3 \mid x_1 < x_2 < x_3\}$ is linear:

{ $(0,1,2) + k_1(0,0,1) + k_2(0,1,1) + k_3(1,1,1) | k_1, k_2, k_3 \in \mathbb{N}$ }.

Properties of semi-linear sets:

effective closure under Boolean operations [Ginsburg & Spanier]

equivalence to Presburger-definable sets [Ginsburg & Spanier]

Parikh Mapping and Parikh's Theorem

$$\Sigma = \{a_1, \dots, a_n\}$$

Parikh mapping $\Phi \colon \Sigma^* \to \mathbb{N}^n$

$$\Phi(w) := (|w|_{a_1}, \dots, |w|_{a_n}).$$

• $\Phi(w)$: the *Parikh image* of w

• $\Phi(L) := {\Phi(w) \mid w \in L} \subseteq \mathbb{N}^n$: the *Parikh image* of *L*

Parikh Mapping and Parikh's Theorem

$$\Sigma = \{a_1, \ldots, a_n\}$$

Parikh mapping $\Phi \colon \Sigma^* \to \mathbb{N}^n$

$$\Phi(w) := (|w|_{a_1}, \dots, |w|_{a_n}).$$

• $\Phi(w)$: the *Parikh image* of w

• $\Phi(L) := \{\Phi(w) \mid w \in L\} \subseteq \mathbb{N}^n$: the *Parikh image* of *L*

Theorem (Parikh (1961)): The Parikh image of any context-free language is effectively semi-linear.

Higher-Order Pushdown Automata

Finite-state automata augmented with a nested pushdown stack, i.e., a stack of stacks of ... stacks

Level *n* HOPDA: *n*-fold nested stacks

Higher-Order Pushdown Automata

- Finite-state automata augmented with a nested pushdown stack, i.e., a stack of stacks of ... stacks
- Level *n* HOPDA: *n*-fold nested stacks
- Background:
 - Maslov (1976): Formal definition; correspondence with generalized indexed languages
 - Damm and Goerdt (1982): automaton characterization of the OI hierarchy
 - Engelfriet (1983): correspondence to complexity classes
 - Carayol and Wöhrle (2003): correspondence to a hierarchy of infinite graphs introduced by Caucal

Level 2 PDA

Stack alphabet Γ with initial symbol \bot :

- Level 1 stack (1-stack): $[Z_m \cdots Z_1]$; Z_m is the topmost symbol.
- Level 2 stack (2-stack): $[s_r, \ldots, s_1]$, where s_1, \ldots, s_r are 1-stacks, and s_r is the topmost 1-stack.
 - Empty level 2 stack $[[\varepsilon]]$; initial level 2 stack $[[\bot]]$.

Level 2 PDA

Stack alphabet Γ with initial symbol \bot :

- Level 1 stack (1-stack): $[Z_m \cdots Z_1]$; Z_m is the topmost symbol.
- Level 2 stack (2-stack): $[s_r, \ldots, s_1]$, where s_1, \ldots, s_r are 1-stacks, and s_r is the topmost 1-stack.
- Empty level 2 stack [[ε]]; initial level 2 stack [[\perp]].
- Instructions on 1-stacks: push and pop
- Instructions on level 2 stacks:
 - push and pop on the topmost 1-stack
 - copy the topmost 1-stack
 - remove the topmost 1-stack
 - Access: only to the topmost symbol of the topmost 1-stack !

$$L_{\text{quad}} := \{a^k b^{k^2} \mid k \in \mathbb{N}\} \subseteq \{a, b\}^*$$

Take $\Gamma := \{\perp, Z, Z_2\}$ and process input $a^k b^{k^2}$ as follows:

RWTH Aachen – Wong Karianto

$$L_{\text{quad}} := \{a^k b^{k^2} \mid k \in \mathbb{N}\} \subseteq \{a, b\}^*$$

Take $\Gamma := \{\perp, Z, Z_2\}$ and process input $a^k b^{k^2}$ as follows:

$$\left[\left[Z_2 Z^{2k} \bot\right]\right]$$

RWTH Aachen – Wong Karianto

$$L_{\text{quad}} := \{a^k b^{k^2} \mid k \in \mathbb{N}\} \subseteq \{a, b\}^*$$

Take $\Gamma := \{\perp, Z, Z_2\}$ and process input $a^k b^{k^2}$ as follows:

 $[[Z_2 Z^{2k} \bot],$ $[Z_2 Z^{2k} \bot]]$

RWTH Aachen – Wong Karianto

$$L_{\text{quad}} := \{a^k b^{k^2} \mid k \in \mathbb{N}\} \subseteq \{a, b\}^*$$

Take $\Gamma := \{\perp, Z, Z_2\}$ and process input $a^k b^{k^2}$ as follows:

$$L_{\text{quad}} := \{a^k b^{k^2} \mid k \in \mathbb{N}\} \subseteq \{a, b\}^*$$

Take $\Gamma := \{\perp, Z, Z_2\}$ and process input $a^k b^{k^2}$ as follows:

Number of *Z*'s above $Z_2: \sum_{i=0}^{k-1} (2i + 1) = k^2$

RWTH Aachen – Wong Karianto

$$L_{\text{quad}} := \{a^k b^{k^2} \mid k \in \mathbb{N}\} \subseteq \{a, b\}^*$$

Take $\Gamma := \{\perp, Z, Z_2\}$ and process input $a^k b^{k^2}$ as follows:

Number of Z's above $Z_2: \sum_{i=0}^{k-1} (2i+1) = k^2$

$$\Phi(L_{\text{quad}}) = \{(x_1, x_2) \in \mathbb{N}^2 \mid x_1^2 = x_2\}$$

$$\implies \text{not semi-linear (proof by growth rate arguments)}$$

Semi-Polynomial Sets

• $A \subseteq \mathbb{N}^n$ linear: $\bar{x} \in A$ iff $k_1, \ldots, k_m \in \mathbb{N}$ exist such that

 $\bar{x} = \bar{x}_0 + k_1 \bar{x}_1 + \ldots + k_m \bar{x}_m.$

Semi-Polynomial Sets

• $A \subseteq \mathbb{N}^n$ linear: $\bar{x} \in A$ iff $k_1, \ldots, k_m \in \mathbb{N}$ exist such that

$$\bar{x} = \bar{x}_0 + k_1 \bar{x}_1 + \ldots + k_m \bar{x}_m$$

Replace the vectors with their components:

 $\bar{x} = (x_{01}, \dots, x_{0n}) + (k_1 x_{11}, \dots, k_1 x_{1n}) + \dots + (k_m x_{m1}, \dots, k_m x_{mn})$

and replace linear terms $k_i x_{ij}$ with polynomial ones.

Semi-Polynomial Sets

• $A \subseteq \mathbb{N}^n$ linear: $\bar{x} \in A$ iff $k_1, \ldots, k_m \in \mathbb{N}$ exist such that

$$\bar{x} = \bar{x}_0 + k_1 \bar{x}_1 + \ldots + k_m \bar{x}_m$$

Replace the vectors with their components:

 $\bar{x} = (x_{01}, \dots, x_{0n}) + (k_1 x_{11}, \dots, k_1 x_{1n}) + \dots + (k_m x_{m1}, \dots, k_m x_{mn})$ and replace linear terms $k_i x_{ij}$ with polynomial ones.

■ $A \subseteq \mathbb{N}^n$, $n \ge 1$, is called *polynomial of degree* $d \ge 1$ if there exist \bar{x}_0 (the *constant*) and $(\bar{x}_{i,j})_{1 \le i \le m, 1 \le j \le d}$ (the *periods*) with

$$A = \{ \bar{x}_0 + k_1 \bar{x}_{1,1} + k_1^2 \bar{x}_{1,2} + \dots + k_1^{d-1} \bar{x}_{1,d-1} + k_1^d \bar{x}_{1,d} + \dots + k_m \bar{x}_{m,1} + k_m^2 \bar{x}_{m,2} + \dots + k_m^{d-1} \bar{x}_{m,d-1} + k_m^d \bar{x}_{m,d} + k_1 \bar{x}_{1,d-1} + k_m \bar{x}_{m,d-1} + k_m \bar{x}_{m,d-$$

Semi-polynomial set of degree d: finite union of polynomial sets of degree d

Aim: show that each semi-polynomial set can be generated (via the Parikh mapping) by some 2-PDA

Aim: show that each semi-polynomial set can be generated (via the Parikh mapping) by some 2-PDA

Idea: extend the idea used for the case of quadratic sets

Aim: show that each semi-polynomial set can be generated (via the Parikh mapping) by some 2-PDA

Idea: extend the idea used for the case of quadratic sets

A technical lemma: decomposition of polynomials

Lemma: Let $k \ge 0$ and e > 0. Then,

$$k^{e} = \sum_{i=0}^{k-1} \left(c_{e-1}i^{e-1} + c_{e-2}i^{e-2} + \dots + c_{2}i^{2} + c_{1}i + 1 \right) , \qquad (1)$$

where $c_j := {e \choose j}$ for j = 1, ..., e - 1.

Proof. By induction on k.

Lemma: Let $d \ge 1$ and $\Gamma := \{\bot, Z_1, \ldots, Z_d\}$. Then, for $1 \le e \le d$, $k \in \mathbb{N}$, and $w \in \Sigma^*$, we can construct a 2-PDA \mathfrak{A} with states p and q which proceeds from configuration $(p, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ to configuration $(q, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ after reading w^{k^e} .

Lemma: Let $d \ge 1$ and $\Gamma := \{\bot, Z_1, \ldots, Z_d\}$. Then, for $1 \le e \le d$, $k \in \mathbb{N}$, and $w \in \Sigma^*$, we can construct a 2-PDA \mathfrak{A} with states p and q which proceeds from configuration $(p, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ to configuration $(q, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ after reading w^{k^e} .

Proof. By induction on d. For simplicity, let $Z := Z_1$.

d = 1: Only subcase $e = 1 \Rightarrow k^e = k$.

$$[[Z_d Z^{2k} \bot], \dots]$$

Lemma: Let $d \ge 1$ and $\Gamma := \{\bot, Z_1, \ldots, Z_d\}$. Then, for $1 \le e \le d$, $k \in \mathbb{N}$, and $w \in \Sigma^*$, we can construct a 2-PDA \mathfrak{A} with states p and q which proceeds from configuration $(p, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ to configuration $(q, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ after reading w^{k^e} .

Proof. By induction on d. For simplicity, let $Z := Z_1$.

d = 1: Only subcase $e = 1 \Rightarrow k^e = k$.

$$[[Z_d Z^{2k} \bot],$$
$$[Z_d Z^{2k} \bot], \dots]$$

Lemma: Let $d \ge 1$ and $\Gamma := \{\bot, Z_1, \ldots, Z_d\}$. Then, for $1 \le e \le d$, $k \in \mathbb{N}$, and $w \in \Sigma^*$, we can construct a 2-PDA \mathfrak{A} with states p and q which proceeds from configuration $(p, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ to configuration $(q, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ after reading w^{k^e} .

Proof. By induction on d. For simplicity, let $Z := Z_1$.

d = 1: Only subcase $e = 1 \Rightarrow k^e = k$.

$$[[Z^{2k}\bot],$$
$$[Z_d Z^{2k}\bot], \dots]$$

Lemma: Let $d \ge 1$ and $\Gamma := \{\bot, Z_1, \ldots, Z_d\}$. Then, for $1 \le e \le d$, $k \in \mathbb{N}$, and $w \in \Sigma^*$, we can construct a 2-PDA \mathfrak{A} with states p and q which proceeds from configuration $(p, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ to configuration $(q, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ after reading w^{k^e} .

Proof. By induction on d. For simplicity, let $Z := Z_1$.

d = 1: Only subcase $e = 1 \Rightarrow k^e = k$.

d = 2: For e = 1, as before. For e = 2, as with L_{quad} .

Lemma: Let $d \ge 1$ and $\Gamma := \{\bot, Z_1, \ldots, Z_d\}$. Then, for $1 \le e \le d$, $k \in \mathbb{N}$, and $w \in \Sigma^*$, we can construct a 2-PDA \mathfrak{A} with states p and q which proceeds from configuration $(p, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ to configuration $(q, [[Z_d Z^{2k} \bot], s_r, \ldots, s_1])$ after reading w^{k^e} .

Proof. By induction on d. For simplicity, let $Z := Z_1$.

$$d = 1$$
: Only subcase $e = 1 \Rightarrow k^e = k$.

d = 2: For e = 1, as before. For e = 2, as with L_{quad} .

 $d \ge 3$: For e = 1, 2, as before. For $e = 3, \ldots, d$, apply Decomposition Lemma:

$$k^{e} = \sum_{i=0}^{k-1} \left(c_{e-1}i^{e-1} + c_{e-2}i^{e-2} + \dots + c_{2}i^{2} + c_{1}i + 1 \right) ,$$

where $c_j := {e \choose j}$, for j = 1, ..., e - 1.

RWTH Aachen – Wong Karianto

$[[Z_d \qquad Z^{2k} \qquad \bot], \ldots].$

$\begin{bmatrix} Z_{e-1} & Z^{2(k-1)} & \bot \end{bmatrix},$ $\begin{bmatrix} Z_d & Z^{2k} & \bot \end{bmatrix}, \dots \end{bmatrix}.$

$$\begin{split} & [[Z_{e-1}\bot], \\ & [Z_{e-1}ZZ\bot], \\ & [Z_{e-1}ZZZZ\bot], \\ & \vdots \\ & [Z_{e-1} \qquad Z^{2(k-1)} \qquad \bot], \\ & [Z_d \qquad Z^{2k} \qquad \bot], \dots]. \end{split}$$

For each i = 0, ..., k - 1, starting from 1-stack $[Z_{e-1}Z^{2i} \perp]$, process

$$(c_{e-1}i^{e-1} + c_{e-2}i^{e-2} + \dots + c_2i^2 + c_1i + 1).$$

successive words w, using the induction hypothesis.

The procedure ends if Z_d appears, having processed

$$\sum_{i=0}^{k-1} \left(c_{e-1}i^{e-1} + c_{e-2}i^{e-2} + \dots + c_2i^2 + c_1i + 1 \right) ,$$
 i.e. (k^e) -many successive words $w.$

Theorem: Every semi-polynomial set is the Parikh image of a 2-PDA-recognizable language.

Theorem: Every semi-polynomial set is the Parikh image of a 2-PDA-recognizable language.

Proof. W.l.o.g., consider only polynomial sets (closure under union).

Let $A \subseteq \mathbb{N}^n$ be a polynomial set of degree d, given by \bar{x}_0 and $\bar{x}_{i,j}$ $(1 \leq i \leq m, 1 \leq j \leq d).$

Define $\Sigma := \{a_1, \ldots, a_n\}$ and assign to \bar{x}_0 and $\bar{x}_{i,j}$ words w_0 and $w_{i,j}$ in $a_1^* \cdots a_n^*$.

Construct 2-PDA A with

$$L(\mathfrak{A}) = \{ w_0 \\ w_{1,1}^{k_1} w_{1,2}^{k_1^2} \cdots w_{1,d-1}^{k_1^{d-1}} w_{1,d}^{k_1^d} \\ \cdots \\ w_{m,1}^{k_m} w_{m,2}^{k_m^2} \cdots w_{m,d-1}^{k_m^{d-1}} w_{m,d}^{k_m^d} \mid k_1, \dots, k_m \in \mathbb{N} \}$$

Main Theorem (continued)

Read w_0 (without using the stack).

For i = 1, ..., m:

- ► Guess k_i by pushing (2k_i)-many Z's followed by a Z_d, resulting in [[Z_dZ^{2k_i}⊥]].
- ► For j = 1,..., d: By previous lemma, process (k^j_i)-many successive words w_{i,j}.
- After having processed

 $w_{i,1}^{k_i} w_{i,2}^{k_i^2} \cdots w_{i,d-1}^{k_i^{d-1}} w_{i,d}^{k_i^d}$, remove k_i from the stack and proceed with next *i*.

The procedure ends after we have processed

$$w_0 \quad w_{1,1}^{k_1} w_{1,2}^{k_1^2} \cdots w_{1,d-1}^{k_1^{d-1}} w_{1,d}^{k_1^d} \quad \cdots \quad w_{m,1}^{k_m} w_{m,2}^{k_m^2} \cdots w_{m,d-1}^{k_m^{d-1}} w_{m,d}^{k_m^d}$$

 $L_{\exp} := \{a^x b^{2^x} \mid x \in \mathbb{N}\}$ is 2-PDA-recognizable (Carayol and Wöhrle):

 $L_{\exp} := \{a^x b^{2^x} \mid x \in \mathbb{N}\}\$ is 2-PDA-recognizable (Carayol and Wöhrle): Take $\Gamma := \{\perp, \#, Z, 0, 1\}$ and process input $a^k b^{2^k}$ as follows:

$[[Z^k \bot]]$

 $L_{\exp} := \{a^x b^{2^x} \mid x \in \mathbb{N}\}\$ is 2-PDA-recognizable (Carayol and Wöhrle): Take $\Gamma := \{\perp, \#, Z, 0, 1\}$ and process input $a^k b^{2^k}$ as follows:

$[[\#Z^k\bot]]$

 $L_{\exp} := \{a^x b^{2^x} \mid x \in \mathbb{N}\}\$ is 2-PDA-recognizable (Carayol and Wöhrle): Take $\Gamma := \{\perp, \#, Z, 0, 1\}$ and process input $a^k b^{2^k}$ as follows:

 $L_{\exp} := \{a^x b^{2^x} \mid x \in \mathbb{N}\}\$ is 2-PDA-recognizable (Carayol and Wöhrle): Take $\Gamma := \{\perp, \#, Z, 0, 1\}$ and process input $a^k b^{2^k}$ as follows:

 $L_{\exp} := \{a^x b^{2^x} \mid x \in \mathbb{N}\}$ is 2-PDA-recognizable (Carayol and Wöhrle): Take $\Gamma := \{\perp, \#, Z, 0, 1\}$ and process input $a^k b^{2^k}$ as follows:

Implement a *binary counting* using top symbols of 1-stacks as bits.

 $L_{\exp} := \{a^x b^{2^x} \mid x \in \mathbb{N}\}$ is 2-PDA-recognizable (Carayol and Wöhrle): Take $\Gamma := \{\perp, \#, Z, 0, 1\}$ and process input $a^k b^{2^k}$ as follows:

Implement a *binary counting* using top symbols of 1-stacks as bits. However, $\Phi(L_{exp}) = \{(x, 2^x) | x \in \mathbb{N}\}$ is not semi-polynomial ! (proof by growth rate arguments).

RWTH Aachen – Wong Karianto

 $L_{\text{prod}} := \{a^x b^y c^{xy} \mid x, y \in \mathbb{N}\}$ is 2-PDA-recognizable:

 $L_{\text{prod}} := \{a^x b^y c^{xy} \mid x, y \in \mathbb{N}\}$ is 2-PDA-recognizable:

Take $\Gamma := \{\perp, Z\}$ and process input $a^x b^y c^{xy}$ as follows:

 $L_{\text{prod}} := \{a^x b^y c^{xy} \mid x, y \in \mathbb{N}\}$ is 2-PDA-recognizable:

Take $\Gamma := \{\perp, Z\}$ and process input $a^x b^y c^{xy}$ as follows:

 $L_{\text{prod}} := \{a^x b^y c^{xy} \mid x, y \in \mathbb{N}\}$ is 2-PDA-recognizable:

Take $\Gamma := \{\perp, Z\}$ and process input $a^x b^y c^{xy}$ as follows:

Number of Z's: xy

 $L_{\text{prod}} := \{a^x b^y c^{xy} \mid x, y \in \mathbb{N}\}$ is 2-PDA-recognizable:

Take $\Gamma := \{\perp, Z\}$ and process input $a^x b^y c^{xy}$ as follows:

Number of Z's: xy

However, $\Phi(L_{\text{prod}}) = \{(x, y, xy) \mid x, y \in \mathbb{N}\}$ is not semi-polynomial ! (the proof involves a number-theoretical analysis)

Summary:

- Semi-Polynomial sets *cannot* capture the Parikh images of 2-PDA's.
- Ingredients needed for a characterization:
 - polynomials
 - product relations
 - exponential relations

Summary:

- Semi-Polynomial sets *cannot* capture the Parikh images of 2-PDA's.
- Ingredients needed for a characterization:
 - polynomials
 - product relations
 - exponential relations

Future work:

- Extending semi-polynomial sets to capture the Parikh images of 2-PDA's (*n*-PDA's).
 - Restricting 2-PDA's such that only semi-polynomial sets are generated.