Realisability of
Message Sequence Charts

obtaining « easily » distributed implementation

Blaise Genest, CNRS (Singapore, Rennes)

IRISA Lab:
CNRS

Univ Rennes 1
INRIA

IPAL lab: CNRS+
NUS (Thiagarajan...),
A*STAR/I2R (R&D)

Work around in/distributed systems-(games, control, verif.)

INTRODUCTION

Why distributed implementation?

Because the world 1s distributed,

a"" communicant...

Communication protocol:

0% K Control on 2 different
| processes (USB)

tf > Hub
/“;;;F'\\\ .
CardReader() PC()
repeat repeat

send(data) to pc receive(data) from CardReader

Hard to write distributed implementation

Distributed programs Human way of thinking

Globally parallel Globally sequential

Difficult to write a distributed algorithm

— Produce it automatically from “sequential” spec?

Q: Which model for sequential specification, for distributed algorithm?

Kind of models?

Most asyncrhonous system possible
(exit Petr1 Nets, Mazurkiewicz trace, product of automata since
actions are blocking/synchronizing)

—Based on messages, with separeted send and receive.
—FIFO Channel between each pair of process

Can always send, can receive from a channel p only if non empty

Ex: telecomunication protocols etc.

Example of a specification hard to distribute

Specification:

2 Processes: O, 1.

Both Processes can send a message to the other process.

After a message have been received, a new message can be sent.

But no message crossing.

Accept at any point when no message sent and not yet received.

Example of a specification hard to distribute

Specification:

2 Processes: 0, 1.

Both Processes can send a message to the other process.

After a message have been received, a new message can be sent.
Accept at any point when no message sent and not yet received.

Q: How to modelize it with a computer science model?

0 | 0 1

—~_ -

2 scenarios

Example of a specification hard to distribute

Q: How to modelize it with a computer science model?

Graph of scenarios

Example of a specification hard to distribute

Distributed Implementation:
Each process = Finite Automaton A, with sends and receives

0 : Accept if both process accepts
a = \
0 1
0 1

Example of a specification hard to distribute

0 1

d = \ 0 1

b= 7 ab ba

(ab or ba) not possible to implement with
no information exchange between processes

¢ looks like something legitimate for each process.

Example of a specification hard to distribute

Distributed Implementation:
Each process = Finite Automaton A,

different setting:

State of each process:

- attached to mesages sent by the process
- determined deterministically

Example of a specification hard to distribute

0 1 0 1 Each process
€ remembers what
ab = ¢ &A a 1t saw and tags
a= T~ y a messages with
ab this memory
each process checks that
0 1 msg info extends local info

0 1

c = b>a<a

process 0 witness a problem and reject.

(ab or ba) easy to implement with deterministic additional information

Example of a specification hard to distribute
0 1 0 1

a= \ b= /

(a,b)* can be implemented with deterministic additional information.
Pb: Cannot remember all the scenario (infinite states)

remember last actions+current action!
0 1
ba

0 1
— ba~_p
o K b \ b
ba
aa K ba - aa ab
\ bb
y

aa
aa X
ab

ab

Example of a specification hard to distribute

Distributed Implementation:
Each process = Finite Automaton A,

different setting:
State of each process:
- attached to mesages sent by the process
- determined non deterministically
=> Can make choices for others.

Example of a specification hard to distribute

Process can add a non deterministic bounded information
with their messages. => can make choices.
Here, process announces next scenario.

More powerful but
sometimes not good
implemetation
(ex: client chooses whether

server grants him access)

Easier

4

Different settings:

a) Nothing added to messages
b) Deterministic additional information
¢) Non deterministic additional information

Less
hypothesis

Specification and

Implementation
Models

[Genest, Muscholl, Peled :
Survey 2003/2004 in Concurrency and Petri Nets 2003]

Message Sequence Charts (MSCs)

Widely used: TelCo companies, UML sequence diagram, ITU norm, SDL
Also 1n distributed algorithms etc.

Partial order < on events a,b,c...

0 1
] ‘ b.c incomparable
C b ﬁT’ Process Order: a <, cC
d Message Order: a<b
(1st send from O to 1 received
MSC By 1st receive on 1 from 0)

Total order = linearization = execution
abcd or acbd

Any linearization w=> unique MSC M_, : define [w] = {v | M,=M_, }

MSCs-graphs

Graphes whose nodes are MSCs = Rational languages of Scenarios

0 1 0] 1
\ R / -
C

A B

Composition: glue scenario

b

d

f

Along same process line h g

Wil

b (first scenario) can happen (in time) after e (third scenario)

abcdefgh butalso acebdfgh

MSCs-graphs

Graphes whose nodes are MSCs = Rational languages of Scenarios

Define language L(G) as set of executions
of MSCs.

QUIZZ: Regular or not? What 1s L(G)?

MSCs-graphs

Graphes whose nodes are MSCs = Rational languages of Scenarios

0 1
S Define language L(G) as set of executions
r of MSCs.
G
S Define automaton A by choosing

a linearisation of the scenario in the node.
L(Ag) 1s called a set of representatives for L(G).
Then L(G) = [L(Ag)], closure of a regular language.

Communicating Automaton

1@ 11(p)

A
One finite state automata

N For each process.

Process O 21(a) 21(b)
Actions: sends from another process

and receives from another process

20(a) 20(b) with content.
: ‘ I Implicit: communication buffers
N

Process 1 10(a) 10(b)

Communicating Automaton

A:

'1(a) 11(b)
Configuration: states of 0,1 and

Buffer content (tuple of words)

_/
Process 0 21(a) 21(b)

70(a) 70(b)

SllO

N

Process 1 10(a) 10(b)

Communicating Automaton

0 1
Implicit
d
A 3 . FIFO
buffers

'1(a) 11(b)
Configuration: states of 0,1 and

@ Buffer content (tuple of words)

N Execution (forget additional data):
Process 0 21(a) 21(b)

20(a) 20(b) 0!1 0!1 120 120

[\

Q L(A): set of executions possible
— (reaching final states+empty buffer)

Process 1 10(a)

10(b) 0! 170 0!l 170

Realizability

Realizability question: Given MSC-graph G,
find Communicating automaton A with L(A)=L(G) (if possible).

Notice: [L(A)] = L(A) and [L(G)] = [[L(AQ]I=[L(AG)] = L(G)
Both are closed by commutation, none are regular in general.

Realizability

Realizability question: Given MSC-graph G,
find Communicating automaton A with L(A)=L(G) (if possible).

Notice: There are non regular MSC-graphs that can be realized

QUIZZ: give an example.

Realizability

Realizability question: Given MSC-graph G,
find Communicating automaton A with L(A)=L(G) (if possible).

Notice: There are MSC-graphs that cannot be realized.

QUIZZ: give an example.

Restrictions, Regularity and more

[Rajeev Alur, Mihalis Yannakakis: CONCUR 99]

[Anca Muscholl, Doron Peled : MFCS 99]

[Blaise Genest, Anca Muscholl, Helmut Seidl, Marc Zeitoun:
ICALP 2002 & JCSS 2006]

[Genest, Kuske, Muscholl : Fundamentae Informaticae 2007 |

Restrictions

O 1 2+ 3
T " G Cannot be realized
«— | |

Communicating graph of a MSC: 1 node per process, larrow if message

@@@ Not weakly connected

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected
regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G 1s strongly connected

Restrictions

Can be realized

G
Communicating graph of a MSC: 1 node per process, larrow if message

weakly connected

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected
regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G 1s strongly connected

Restrictions

0 1

Can be realized

\
—
G

Communicating graph of a MSC: 1 node per process, larrow if message

a‘a strongly connected

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected
regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G 1s strongly connected

Restrictions

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, 1s weakly connected
regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G 1s strongly connected

If G is a regular MSC-graph, then L(G) 1s regular.

If G is a globally cooperative MSC-graph, then for all B,
Set of B bounded executions of L(QG) 1s regular.

Testing any restriction is co NP-complete

Regularity

'1(a) A: 11(b) communicating automaton A

\ °.° L(A) 1s regular iff channels

' are bounded: there exists B,
Process 0 21 o for all w € L(A),for all prefix v of w:
‘1) 71(b) Number of sends in v
< B + number of receives in v

20(a) 20(b)

el

Process 1 10(a) 10(b)

Finite Automaton
for L(A)

Loop: Same number of sends and receives

Regularity

'1(a) A 11(b) communicating automaton A

\ c L(A) is regular iff channels
' are bounded: there exists B,
for all w € L(A),for all prefix v of w:

P
rocess 0 1) ?1(b) Number of sends in v

< B + number of receives in v
70(a) ?70(b)

\ A Undecidable to test if
o c L(A) 1s regular (=bounded)
' Undecidable to test if L(A) 1s B-bounded

Process 1 comm. Automata are Turing powertul:
@) 10(b) 1(reduction to L(A)=0) =F

Regularity

A:
'1(a) 11(b) Decidable to test if LPf(A) is B bounded

. A (Lrret considers all states final and accepts
o.c even 1f some message not yet received)

Process ?1(a) ?1(b) -Construct L' (A) up to bound B+1.

-Check whether bound B+1 is reached
?0(a) 70(b) by an execution.

\ c This execution is in LPe{(A)
' and 1s not B bounded.

Process 1
0(a) 10(b) Else L(A) C Lrref(A) are B-bounded

Deterministic Communicating Automata

A:
'1(a) 11(b)
H .' deterministic 1f when
Process 0 21(a) 71(b) 2 transitions from same state
labeld by !p(m) and !p(n),
then m=n.

70(a) 70(b)

el

Process 1 10(a) 10(b)

QUIZZ.: deterministic?

Realizability

Realizability question: Given MSC-graph G,
find Communicating automaton A with L(A)=L(G) (if possible).

a) No message content
b) Deterministic additional information
¢) Non deterministic additional information

No message content

[Rajeev Alur, Kousha Etessami, Mihalis Yannakakis: ICALP 2001
& TCS 2003]

[Markus Lohrey : CONCUR 2002 & TCS 2003]

Example of a specification hard to distribute

0 1

d = \ 0 1

b= 7 ab ba

(ab or ba) not possible to implement with
no information exchange between processes

¢ looks like something legitimate for each process.

Intuition

0 | 0 |

\ > / G

Look at the projection A,,A,; of G on each process 0 and 1.
Both A,,A, are regular language => communicating automaton A.

1 10

Claim:
Ay A G 1s realizable iff
L(A)=L(G), and then

2 20 A 1s an implementation.

Proof

Claim: G 1s realizable iff L(A)=L(G), and then A 1s an implementation.

Assume that 4 communicating automata
with local final states B with L(B)=L(G)

By construction, L(G) C L(A). Let us show that L(A) C L(G)
Letw € L(A).

Then for all p, m (W) € L(A,)= L(7,(G)):
3 x € L(G)=L(B) with 7 (x) =m,(W).
It means that 7 (x)=m (W) reaches a final state of B,.

Hence w reaches a final state on every process of B :
w € L(B)=L(G).

Undecidability

Claim: G 1s realizable iff L(A)=L(G), and then A 1s an implementation.

Theorem: Checking whether L(QG) 1s realizable 1s undecidable
(even 1f G 1s regular and L(Ay)=L(G))

Reduction to PCP: words (v,,w.) on {a,b}"

Ex: (vy,Wy)=(ab,a) and (v,,w,) = (a,ba)

\Y% W W vV
e 2 =l
el 4b\/1’ P ELEG;
a_—— a__—— Q.

PCP has a solution iff not realizable

Some Decidability results

Claim: G 1s realizable iff L(A)=L(G), and then A 1s an implementation.

Theorem: Checking whether L(G) 1s realizable 1s co-NEXPTIME
when G has no loop (finite set of MSCs).

Theorem: Checking whether Pref(L(G)) = LPrei(A)
1s EXPSPACE-complete when G 1s globally-cooperative
(includes regular MSC-graphs). In general, undecidable.

Intuition

Theorem: Checking whether Pref(L(G))= LPrei(A)
1s EXPSPACE-complete when G 1s globally-cooperative
(includes regular MSC-graphs). In general, undecidable.

Intuition: LPei(A) = Pref(L(G))?

Regularity of G gives a bound on number of messages in transit for
executions of G.

—Check whether all executions of LP{(A)) are bounded.
If not, Lref(A) # Prefix(L(Q)).
If yes, test equality of two regular sets (L(G) exponential in IGl).

deterministic additional
information

[Henriksen, Madhavan Mukund, Narayan Kumar, Mihind Sohoni,
P.S.Thiagarajan : CONCUR-ICALP 2000; I&C 2005]|

[Dietrich Kuske STACS 2002, 1&C 2004]

Henriksen et Al. Theorem

Deterministic
bounded
Communicating
autorpaton

Difficult part

All these regular (thus bounded)
formalisms are equivalent. Every
regular MSC graphs are realizable!

MSO
regular « Jegular set of , formula
CMSC-graph linearizations that are

bounded

Mazurkiewicz trace Theory

Asyncrhonous
Automaton

Don’t reinvent the wheel,
Zielonka lift known results.
Theorem ‘87| Reasoning with messages is hard,

try to break down problem
Ochmanski theorem ‘83

\4

Loop connected’ Regular set of . fol\:lriaa
Rational traces
on traces

set of traces

Mazurkiewicz trace Theory

Given: Alphabet X and Symetric Independance relation I C X' x Y

Define ~ smallest equivalence relation containing
uabv ~ ubav when (a,b) € 1

Traces are equivalence class of ~ over words of

Ideas: words < linearizations/executions
Traces <& MSCs
Encode commutations of MSCs into fixed Independance alphabet 2.1

Kuske’s Alphabet

a Alphabet: Q=a,a,b,b,c,c,d,d
° b~y b
2 commutation 2°~zPa
ab~;ba
b ac~;Cca
c db~,bd
d
2 ababcd~;aabbcd
b

MSC 2-bounded Lin(M)=[ab ab ab];

red a can be received only by ared b

Kuske’s Alphabet

-
[

Representatives on Y/

G — Ag—— Cg4

|
On Q

L(G) 1s regular and
2 bounded

\//

Alphabet: Q=a,a,b,b,c,c,d,d
(a=0!1, b= 170, c=110,d=071)

ab~;ba ac~;ca cd~;dc
ab~;ba db~;bd dc~;cd

L(G) = m5[L(Cg)l;

Cg 15 loop connected since loops of G are strongly connected.
Ochmanski: L(G) 1s regular. Zielonka: 4 AA, L(AA)=L([C;])

Asynchronous Automaton simulation

Simulation by a communicating automaton A

of deterministic Asyncrhonous Cellular Automaton AA:
each event is labeled by a state k € K (K finite set)
new state depends only upon states of dependent letters

b k
Kyay ks 2
l :;bk4
K K, *c ks
k6dY kS
k; @’
v b

k, computed using k,

For each letter, local state remembers
state of last event with that letter.

Communicating automaton A

ki a ; K, Final states of communicating automaton A

bk, - final states of asynchronous automaton AA
k; a vk i

' Y b Kk, For each B bounded linearization w,

k, k, *C k. w € L(A) iff w € L(AA).
Ko o Y Ks
k, a’
' b

Set of B bounded lin.

So L(A) N *p=L(AA) N Lp*=L(G) NY 5*=L(G)

Communicating automaton A

So L(A) N *p=L(AA) N Lp*=L(G) NY 5*=L(G)

Build Ay with w € L(Ay) iff M., is B bounded.
Then L(AxA)=L(G)

1 Nbr received
2 :

Idea: Each process counts how many = .

messages 1n transit up to B+1. * 2

If reaches B+1 at some point, 2 v

then reject, else accepts. 210 =(0 ¥ '
1

Non deterministic additional
information

[Blaise Genest, Dietrich Kuske, Anca Muscholl 1&C 2006]

Globally cooperative MSC-graphs

0 1

B

Can be realized

G
Communicating graph of a MSC: 1 node per process, larrow if message

weakly connected

Globally cooperative but not regular and still realizable.

Idea: Extends Henrinksen et al.

Globally cooperative MSC-graphs

There are globally cooperative MSC-graphs which cannot be realized
with deterministic communicating automata.

Q

P

S

/

—

/
/

T

T~

\
\

Spec:

After the n-th receive of S,
process P sends p(n) messages.
process Q sends q(n) messages.

p(n)=q(n) € (1,2}

Easy to implement with non determinism (S chooses p(n)=q(n)).

Globally cooperative MSC-graphs

There are globally cooperative MSC-graphs which cannot be realized
with deterministic communicating automata.

S Q

P

/
/

T

/
\
/

\
\

Assume A deterministic
implementing G.
A has n states on each process.

There exists two sequences
(a)3(by), i€{1.. In(m%)} of p(n)
after which states of all process
are the same.

A has to accept mix of (a,) on P
and (b,) on Q, contradiction

Globally cooperative MSC-graphs

Need candidates for class of Communicating automata
equivalent with globally cooperative MSC-graphs.

A 1is said « existentially bounded» if d regular set of representative.

All MSC-graphs are existentially bounded (Remember A).
Globally cooperative have furthermore Lin®(A) regular set
of representatives

An d bounded communicating automaton A has LinB(A)
regular set of representatives.

Genest et Al. Theorem
(Non —Deterministic)

G|Iobally4
cooperative
CMSC-graph

4 bounded
Communicating

autorpaton
LinB(G)vreguIar MSO
. 4 , formula

set of
. that are

representatives

4 bounded

Reuse Same Kuske Encoding!

G is 3-2 bounded.

Reuse same Kuske Encoding!

Alphabet: Q=a,a,b,b

: ab~ ba
] 5 commutation ab~.ba
b
a ababab~;aababb+«;aaabbb

Lin2(M)=[ab ab ab];

Trace alphabet gives us only B bounded linearizations, not all

Kuske Encoding

d
. <p 7,
Associated
Partial order: Y 4 b
Q..
<p <c
<G
rev associate I-th receiver b

With i+Bth send on same channel

Simulation of the Cellular AA

Simulate with non deterministic Communicating automaton:
Will guess value for rev, and check them later.

3
(k)

4 Ko

Ky T (k)
e test that GUESS=k,
k- "k ’
° &GUSSS/
\ 4 k6

To compute ks, needs value of k,: no way to know it for sure:
Guess it, and chek it later.

Communicating automaton A
L(A) NX*p = L(AA) N Xp*= L(G) N X 5*=L(G)

Build Ag with w € L(Ay) 1ff M, has a B bounded linearization.
Then L(AxAR)=L(G)

e<,fife<,fand

Idea: New relation .
ew relatio f first event of type a

M is 3—B-bounded iff (rev U msg U <) is acyclic
Prop: If cycle in (rev U msg U <,), then a cycle of bounded size

look for cycle in this relation (need to guess for rev).

Conclusion and Future Work

Realizability: Many settings, many results.
This talk: only a glimpse of all the results.

Still too expansive (time to check, size of the implementation)
or too restricted (class to implement from).

Other results:

Weaker results for very generic system (local EMSO) and

Small non deterministic implementation for very restricted systems
(local choice MSC-graphs, incomparable with regular MSC-graphs)

In term of techniques: lift result of simpler specifications (Traces).

Future work: handle distributed games (non controllable events,
specification 1s only set from which to choose strategy),
Main problem generate a distributed strategy.

