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What is a hybrid system?

Hybrid (from Greece) means arrogant,
presumptuous.

After H. Menge: Griechisch/Deutsch,
Langenscheidt 1984

Hybrid stems from Latin hybrida 'off-
spring of a tame sow and wild boar,
child of a freeman and slave, etc.’

From the Compact Oxford English
Dictionary, 2008
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Hybrid Systems
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Hybrid systems

are ensembles of interacting discrete and continuous subsystems:
m Technical systems:

O

[m]
O
O

physical plant + multi-modal control

physical plant + embedded digital system

mixed-signal circuits

multi-objective scheduling problems (computers / distrib. energy
management / traffic management / ...)

m Biological systems:

O
O

Delta-Notch signaling in cell differentiation
Blood clotting

o ..

= Economy:
O cash/good flows + decisions

O

® Medicine/health/epidemiology:

O

infectious diseases + vaccination strategies

o ..
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A Networked Automation System

(After Greifeneder and Frey, 2006)
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A Networked Automation System

network

PLC-1O

execution

uniformly distributed 699 lu 470 lu Olu
over {923 lu,..., 900 lu}

Questions:
m May the carriage ever stop outside the designated range of drilling

positions, or even fail to stop at all?

®m How likely is it to stop inside the designated range of drilling
positions?

m What is the expected value of the stopping position, etc.?
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O Qualitative analysis:

@ An appropriate computational model: hybrid automata
@® Bounded model checking of discrete-time HA:

B reduction to arithmetic constraint formulae,
B arithmetic constraint solving.

© Bounded model checking of dense-time HA:

B constraint solving for arithmetic formulae involving ODE.

® Quantitative analysis:

@ An appropriate computational model: probabilistic hybrid automata
@® Bounded model checking of avoid probabilities

B falsification by reduction to quantified arithmetic constraint formulae,
B constraint solving involving randomized quantifiers.

© Bounded model checking of expected avoid times

B verification by reduction to quantified arithmetic constraint formulae.
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Bounded Model Checking of Hybrid Systems

The Qualitative Case
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A Formal Model: Hybrid Automata

x =20.0\y =0.0

x=0.0AYy <00/
y'=-08-y

x : vertical position of the ball
y : velocity
y > 0 ballis moving up
y < 0 ball is moving down

NN T NN N N NN NN

N~~- s

-20
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SAT Modulo Theory

An engine for
bounded model checking of
linear hybrid automata
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00—t 12 23 s P

m construct formula that is satisfiable iff error trace of length k exists

m formula is a k—fold unwinding of the system's transition relation,
concatenated with a characterization of the initial state(s) and the
(unsafe) state to be reached

_ < init(xo) A trans(xg,x7) A ... A trans(xihxi))
= dxo) N... A D)

B yse appropriate decision procedure to decide satisfiability of the
formula

m usually BMC is carried out incrementally for k = 0,1,2,... until an
error trace is found or tired
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of Linear Hybrid Automata

12

o

-6

20 3l

Initial state:

o) A =ad A X =0.0

Jumps:

G AGH S (K >12) A K =05-x) Ati=0

Flows:
(xt421th) < %t < (k1431
At 5 A (M <12)
A (tH>0)

Quantifier—free Boolean combinations of linear arithmetic
constraints over the reals

Parallel composition corresponds to conjunction of formulae
— No need to build product automaton
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Reduction of Matlab/Simulink to Constraints

Translation to HySAT

- Switch block: Passes through the first input or the third input
- based on the value of the second input.

brake -> a = a_brake;
Ibrake -> a = a_free;
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Reduction of Matlab/Simulink to Constraints

Translation to HySAT

- Relay block: When the relay is on, it remains on until the input
- drops below the value of the switch off point parameter. When the
- relay is off, it remains off until the input exceeds the value of
- the switch on point parameter.

(lis_on and h >= param_on ) -> ( is_on’ and brake);
(!is_on and h < param_on ) -> (!is_on’ and !brake);
( is_on and h <= param_off) -> (!is_on’ and !brake);
( is_on and h > param_off) -> ( is_in’ and brake);
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Ingredients of a Solver for BMC of LHA

BMC of LHA yields very large boolean combination of linear

arithmetic facts.

Davis Putnam based SAT-Solver:

© efficient handling of CNFs and thus (by definitional translation)
arbitrarily structured Boolean formulae

@ propositional variables only

Linear Programming Solver:

© solves large conjunctions of linear arithmetic inequations
@© efficient handling of continuous variables (>> 10°)

@ no disjunctions

Idea: Combine both methods to overcome shortcomings.
~» SAT modulo theory

MoVeP 2010

BMC of Hybrid Systems
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(Simplified) SAT Modulo Theory Scheme: LinS

Davis Putnam Linear Programming
y Input formula:
2e+C+D>2
®=(e— CAD)

A +A+B>2 A (F— AAB)

fgte=>1 A(FVgVe)

g+i>1 A(gVe)

3e+2g+C+D>3 . A (e—= (CVD)Ag)
N(A—-(4x—2y=>79)
A (B— (2x —4y < —7))
A(C— (x+y<5))
A (D= (x<7))

DPLL search

@ traversing possible truth-value assignments of Boolean part

@ incrementally (de-)constructing a conjunctive arithmetic constraint
system

© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam

A

Linear Programming

D

Learned conflict clause: A+B+C > 1

DPLL search

Deduce g, f, A, B
Deduce C from conflict cl.
Deduce D

Deduce C, D

Deduce A, B Deduce g, g

@ traversing possible truth-value assignments of Boolean part
@ incrementally (de-)constructing a conjunctive arithmetic constraint

system

© querying external solver to determine consistency of arithm. constr. syst.

MoVeP 2010 16 / 65
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SAT modulo theory for LinSAT

® SAT modulo theory solvers reasoning over linear arithmetic as a theory
are readily available: E.g.,
O LPSAT [Wolfman & Weld, 1999]
O ICS [Filliatre, Owre, RueB, Shankar 2001], Simplics [de Moura,
Dutertre 2005], Yices [Dutertre, de Moura 2006]
O MathSAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani,
Bozzano, Juntilla, van Rossum, Schulz 2002-]
o CVC [Stump, Barrett, Dill 2002], CVC Lite [Barrett, Berezin 2004],
CV(C3 [Barrett, Fuchs, Ge, Hagen, Jovanovic 2006]
0 HySAT | [Herde & Frinzle, 2004]
O Z3 [Bjgrner, de Moura, 2006-]
o
B Their use for analyzing linear hybrid automata has been advocated a
number of times (e.g. in [Audemard, Bozzano, Cimatti, Sebastiani 2004]).

B They combine symbolic handling of discrete state components (via SAT
solving) with symbolic handling of continuous state components.
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SAT + Interval Constraint Propagation

An engine for BMC of
non-linear discrete-time HA
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Bounded Model Checking of Nonlinear

Discrete-Time Hybrid Systems (1)

Given:
Xn Xn+1 Nonlinear discrete-time hybrid
Delay | dynamical system
( ) X — state vector
™ X1 = f(%Xn, in) i — input vector
on = g(xn,in) o — output vector
> f — next-state function
- g — output function
in on f, g potentially nonlinear.
Goal:
Check whether some unsafe state is reachable within k steps of the
system
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Bounded Model Checking of Nonlinear

Discrete-Time Hybrid Systems (2)

Method:
B Construct formula that is satisfiable if error trace of length k exists
B Formula is a k—fold unrolling of the transition relation, concatenated with

a characterization of the initial state(s) and the (unsafe) state to be
reached

Xo
x1 = f(xo,10) x2 = f(x1,11) x3 = f(x2,12)
00 = g(x0,10) o1 = g(x1,i1) 02 = g(x2,12)
io o 1 12

® Use appropriate procedure to “decide” satisfiability of the formula
Needed:

Solvers for large, non-linear arithmetic formulae with a rich Boolean
structure
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Bounded Model Checking with HySAT / iSAT

ﬁb/
X .
Safety property: SOLUTION:
There' ¢ b (boole):
€re s no sequence o @: [0, 0]
input values such that g;f Ei H
) 3.14<x <315 s [0, @
x:=x+1 04: [1, 1]
e5: [1, 1]
e6: [0, 0]
e7: [1, 1]
es: [0, 0]
@: [1, 1]
DECL e10: [1, 1]
boole b; et1: [0, 0]
float [0.0, 1000.0] x;
x (float):
INIT o o e: [2, 2]
- Characterization of initial state. e1: [1.25992, 1.25992]
x = 2.0; ©2: [2.5874, 2.5874]
TRANS 03: [7.69464, 7.69464]
- Transition relation. HySAT Gls  [CLER, 16722
@5: [4.89756, 4.89756]

b ->x =x"2+1;

Ib -> x? = nrt(x, 3); ©6: [24.9861, 24.9861]

o7: [2.92347, 2.92347]

TARGET @8: [9.5467, 9.5467]
- State(s) to be reached. ©9: [2.12138, 2.12138]
x >= 3.14 and x <= 3.15; ©10: [5.50024, 5.50024]

@11: [31.2526, 31.2526]
@12: [3.14989, 3.14989]
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Find satisfying assignments (or prove absence thereof) for large
(thousands of Boolean connectives) formulae of shape

(b = X%*COSlJ] < 2yy +sinz; +e")
A (x5 =tanyyg Vtanys >2z4 V ...)
VAN
A\ (%:—Sinx/\X3>5/\X3<7/\X4>]2/\...)
AN

Conventional solvers
® do either address much smaller fragments of arithmetic
O decidable theories: no transcendental fct.s, no ODEs

m or tackle only small formulae
0O some dozens of Boolean connectives.
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Interval Constraint Propagation (1)

B Complex constraints are rewritten to “triplets” (primitive constraints):

Ct: h1éxA2
x2+y§6 ~ c2: AN\ hy2hy+y
A hy <6

B “Forward" interval propagation yields justification for constraint
satisfaction:

x € [-2,2]
Aye[-22

)

h,z S 6is
satisfied in box
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Interval Constraint Propagation (1)

B Complex constraints are rewritten to “triplets” (primitive constraints):

Ct: h1éxA2
x2+y§6 ~ c2: AN\ hy2hy+y
A hy <6

B |nterval propagation (fwd & bwd) yields witness for unsatisfiability:

hz S 6is
unsat. in box
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Interval Constraint Propagation (1)

B Complex constraints are rewritten to “triplets” (primitive constraints):

Ct: h] éx/\ 2
x2+y§6 ~ c2: AN\ hy2hy+y
A hy <6
® |nterval prop. (fwd & bwd until fixpoint is reached) yields contraction of

box:

x € [-10,10]
Ay € [-10,10]
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Interval Constraint Propagation (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

Ct: h1éxA2
x2+y§6 ~ c2: A hyZhy+y
A hy <6

® |nterval prop. (fwd & bwd until fixpoint is reached) yields contraction of
box:

Constraint is not satisfied

by the contracted box!

yao | v e l4,4

Ay € [=10,6]

(details & alternatives: see Benhamou in Handbook of Constraint Progr.)
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x € [~100,100] \

x € [=10,10]
y € [0,100]

y € (=100, 100]

x € [~25,2.5]

y € [0,20]

e
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Interval contraction

Backward propagation yields rectangular overapproximation of
non-rectangular pre-images.
Thus, interval contraction provides a highly incomplete deduction

system:
x € [0, 00)
P x € (0, 00)
ARSEY T A yellw) o MEl) A= RS

~» enhance through branch-and-prune approach.
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ISAT: Non-linear Arithmetic Constraint Solving

Cc1:

co:

C3:

ca:

Ce -

c7:

cg:

(ma V —c V d)
A (ma V —=b V ¢)
A (—c V —d)
A (bV x>=2)
A (x>4V y<0V hz>62)

A hy =x?
AN hy==-2-y

A h3 =h; +hy

anzle (University of Oldenburg)

o Use Tseitin-style (i.e. definitional) transformation to
rewrite input formula into a conjunction of constraints:

> n-ary disjunctions of bounds
> arithmetic constraints having at most one operation symt

® Boolean variables are regarded as 0-1 integer variables.
Allows identification of literals with bounds on Booleans:
b=b>1
“b=b<0

e Float variables hy, hy, h; are used for decomposition
of complex constraint x> — 2y > 6.2.

BMC of Hybrid Systems MoVeP 2010



ISAT: Non-linear Arithmetic Constraint Solving

cr: (—ma V —c V d)

c2: A (maV —b V)

c3: A (—c V —d)

cs: A (bV x>=2)

cs: A (x>24Vy<0V h;>62)

ce: A hy =x2

c;: ANhy==-2-y
cg: /A hs=h;+hy
co: A (—a V —c)
clo: A(x<-2Vy<3Vx>3 « conflict clause = symbolic description

of a rectangular region of the search space

which is excluded from future search
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ISAT: Non-linear Arithmetic Constraint Solving

Cc1:

co:

C3:

ca:

Co:

c7:

cg:

Co &

Cio -

(ma V —c V d)
A (ma V —=b V ¢)
A (—c V —d)

A (bV x>=2)

: AN (x>24Vy<o0V hz>62)

A hy =x2
Ahy=-2-y

A h3 =h; +hy

A (—a V —¢)
AN x<—=2Vuy<3Vx>3

x>3 )—%—»(h1>9)
ce

e Continue do split and deduce until either
> formula turns out to be UNSAT (unresolvable conflict)

> solver is left with ‘sufficiently small" portion of the
search space for which it cannot derive any contradiction

Results can be verified by sorting to “single assignment form”.

Essentially, a tight integration of interval constraint propagation with
recent propositional SAT-solving techniques.

[Franzle, Herde, Ratschan, Schubert, Teige: J. on Satisfiability. .., 2007]

M. Frénzle (University of Oldenburg)
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The Impact of Learning: Runtime

Examples:
tmeout ' ' ' ' BMC of
B platoon control
B bouncing ball
B gingerbread map
B oscillatory logistic map

Intersection of geometric
bodies

100000

10000

1000

100

10

without learning [s]

Size:
Up to 2400 variables,
> 103 Boolean connec-

001 0.01 01 1 10 100 1000 tives.
with learning [s]

0.1

0.01

0.001
0.

[2.5 GHz AMD Opteron, 4 GByte physical memory, Linux]
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SAT + ICP + Numeric ODE Enclosure

An engine for BMC of
non-linear continuous-time HA
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@ Continuous flows, described by ODEs, define pre-post-constraints
on continuous states:

O Given an ODE &X = f(x) and a (convex) invariant I C dom(x),
o II%]] = {(f(O),f(t)) | f solution Of % = f(x)’Vt/ S t: f(t/) c I}

® Adding direct support for such “ODE constraints” in arithmetic
constraint solving facilitates BMC of continuous-time hybrid
systems
[Eggers & Franzle: ATVA'08; Ishii, Ueda, Hosobe, Goldsztejn: ADHS'09]
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odeSAT: Adding Forward and Backward

Propagation for ODE Constraints

5
QHH L

postbox

forward propagation backward propagation

AV VAV AN

/7
/7
/7
/7
/7
/7
/7
/7
/s

N

7/ =—=x\\
N~—//// /7 ==\
N~—//// /==
N——— S/ S ==\
N—— S SN\
N——— S S s ==

S S S S e e

S e —

/
/
|
\
\
\
\
\
\

S S S S NN N 1
S S S S e N ——

0 1 2 3 4 5 0 1 2 3 4 5

. - horizon
time of interest

..yields a classical interval propagator!
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Bounded Model Checking of Hybrid Systems

The Quantitative Case
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Example: The MoVeP Coffee-Break Dilemma

t := 0; cookies := 0; toilet := false; chats := 0

t<=15&
cookies >=7
toilet
t>15 Wandering chats >= 2
. T.=(0+2)/3
¥ ti=(16+2) /3
§
[03 03 04] 17 mm 0.4 ti=t+05:
ti=t+2; cookies := cookies +
toilet :=true| t:=t+l min(4,remaining/100)
- P s
U<+l ?, ~| chats++ =
chats++ v L
I =5
t=t+1 E‘\!g* e
- &= 2 TN
r<t+l I (it}
chats++
H remaining =

Being in time w. probability > 0.75 enforcable? ¢ " exp(-Y

M. Frénzle (University of Oldenburg)
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Quantitative Analysis 1

Probabilistic Bounded Reachability in
Probabilistic Hybrid Automata
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Worst-Case Probability of Reaching a Target Loc.

Given Pi o asgn,
m 3 PHA A,

® 3 hybrid state (o, x),

B 3 set of target locations TL,

the maximum probability P‘(‘U)X) of reaching TL from (o,x) within
k € N steps is

1

if o € TL,
Pk — 0

ifod TLAK=0,
) j k—1 ;
Ina‘Xi,A:F(A)I:g(ti)Zj <p3 . Pasgn.j(o‘,F(A))> if o ¢ TLAk > 0.

. . d
where F is the solution to the IVP S¥ = f,(y), yo =x
M. Frénzle (University of Oldenburg)
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Probabilistic Bounded Reachability

Given:

m 3 PHA A,

B 3 set of target locations TL,

® 3 depth bound k € N,

® 3 probability threshold tolerable € [0, 1].

Probabilistic Bounded Reachability Problem:
" s MaX(g,x) an initial state P](i;,x) < tolerable ?

m |.e., is accumulated probability over all paths of reaching bad state
under malicious adversary within k steps acceptable?
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Stochastic Satisfiability Modulo Theory
(SSMT)
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Stochastic satisfiability modulo theory (SSMT)

® Inspired by Stochastic CP and Stochastic SAT (SSAT), e.g.
[Papadimitriou 85] [Tarim, Manandhar, Walsh 06] [Balafoutis, Stergiou
06] [Bordeaux, Samulowitz 07] [Littmann, Majercik 98, dto. + Pitassi 01]

® Extends it to infinite domains (for innermost existentially quantified

variables).
m Extends SSAT to SSAT(T) akin to DPLL vs. DPLL(T).

An SSMT formula consists of

@ an SMT formula ¢ over some (arithmetic) theory T, which may
include ODE, e.g.

@ =(x>0V2a-sin(4b) >3) A (y >0V 2a-sin(4b) <1)A...

® a prefix of existentially and of randomly quantified variables
with finite domains, e.g.

Ix €{0, 1} d((0,0.6),(1,04ny €{0,1} d... F... d...
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Randomized Quantification

Galton Board- At each nail, ball bounces left or right with some
probability p or T —p, resp. (e.g. p =0.5)

((0,p0),(1,p1),(2ip2)y(3ps), (4,pa)y PTODT € {0, 1,2, 3,4}
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Stochastic satisfiability modulo theory (SSMT)

dax €{1,2,3,4,5}

Jy € {left,middle, right}

U,z €{0,1,2,3,4}:

R R T S SR ORI SR d)
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Semantics of an SSMT formula

O =Qix; € dom(x1)...Qnxn € dom(xy) : @

Probability of satisfaction Pr(®):
Quantifier-free base cases:
1. Pr(e: o) = 0 if ¢ is unsatisfiable.
2. Pr(e: @) = 1 if @ is satisfiable.
3 £ Maximum over all alternatives:
3. Pr(dxeD Q:¢9) = max Pr(Q: ov/x]).
d £ Weighted sum of all alternatives:

4. Prdgx €D Q:9@) = > p-Pr(Q:ev/x]).
(v,p)ed
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Semantics of an SSMT formula: Example

O = Ixe{0,1} d006),1,04)Y €{0,1}:
(x >0V 2a-sin(4b) > 3) A (y >0V 2a-sin(4b) < 1)

Pr(®) = max(0.4,1) =1

N\ Pr=06-1404-1=1
~(1,0.4) (0,0.6) T (1,04)

2a-sin(4b) >3

Pr=06-0+04-1=04

(0,0.6)

2a-sin(4b) >3
2a-sin(4b) < 1
unsat

2a-sin(4b) < 1
sat

sat
Pr=0 Pr=1 Pr=1 Pr=1

sat
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Translating PHA Problems
to SSMT Problems
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Translating continuous-time PHA i

controlled defunct
4 = (20 —50c — T)« \ T (20 Ta
_22<T< 18 RN
=0 [ (0,0.06),(1,0.94)) Ter € {0, 1} : ]
source A guard A trans /A distr A action A target

controlled A (T < =22)A (err =1) A true A(T'=TAc’ =0)Acontrolled’) V
controlled A (T > —18) A (eir =2) Aty =0)A (T’ =T) A defunct’) V
controlled A (T > —18) A (etr =2) Alrir = DA(T' =T Ac’ = 1) Acontrolled’ ) V

source A flow A invariant A target
controlled A (% = (20 —50c — T)ax) A (—22<T<-18) Acontrolled’ ) V
defunct A (% =(20-T«) A true A defunct’
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Init(xg) Bad(xg)
A Trans(xg, X1) V Bad(x1)
JtdgprItadaps .. It dapk s | A Trans(xy, x2) Al VBad(xy)
alternating choices ANTE V...
A Trans(xy_1,Xx) V Bad(xy)
k-bounded reach set hits bad state
BMC(k)

m Alternating quantifier prefix encodes alternation of
O nondeterministic transition selection
0 probabilistic choice between transition variants

m Pr(®) = accumulated probability over all paths of reaching bad
state under malicious adversary within k steps
= IMaX(¢ x) initial P](i;’x)-

k
(0,x) initial P(Q“x) > tc
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SSMT Solving
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SSMT algorithm

Problem: Determine whether Pr(®) > tolerable, where

m O =Pre: @ is an SSMT formula

B @ is a Boolean combination of (non-linear) arithmetic constraints
m Pr(®) the satisfaction probability of ®

m tolerable is a constant, the probabilistic satisfaction threshold.

Solution: Take appropriate SMT solver, implant branching rules for
quantifiers, add rigorous proof-tree pruning:

m iSAT solver for mixed Boolean and non-linear arithmetic problems
[Franzle, Herde, Ratschan, Schubert, Teige: 2006-]

m 0deSAT: iSAT + ODE constraints [Eggers, Franzle: 2008-]

m iSAT /odeSAT + branching rules for quantifier handling +
pruning rules ~~ SiSAT [Eggers, Franzle, Hermanns, Teige:
QAPL 2008, HSCC 2008, CPAIOR 2008, ADHS 2009, JLAP 2010]
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Naive SSMT solving

@ Enumerate assignments to quantified variables
® Call subordinate SMT solver on resulting instances
© Aggregate results accord. to SSMT semantics, compare to tolerable

© = Ix€{0,1} do06),1,04nY €{0,1}:
(x >0V 2a-sin(4b) > 3) A (y >0V 2a-sin(4b) < 1)

Pr(®) = max(0.4,1) =1

x=0 x= 1
Pr=0.6-0+04-1=04 > Pr=06-1+04-1=1
(0,0.6) ~(1,04) (0,0.6) T (1,04)
2a-sin(4b) > 3| [2a-sin(4b) >3
2a-sin(4b) < 1 2a -sin(4b) < 1
unsat sat sat sat
Pr=0 Pr=1 Pr=1 Pr=1
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SSMT algorithm: Pruning rules

Scalability: Naive algorithm must traverse whole quantifier tree of
size exponential in number of quantified variables

Goal: Skip major parts based on semantic inferences
Measures:
® Domain reduction by logical and numerical deductions

® Excluding conflicting (partial) assignments (conflict clauses)

® Thresholding [Littman 1999]

m Solution-directed backjumping [Majercik 2004]

® Probability-based value decision heuristics

® Probability learning (akin to memoization
[Majercik, Littman 1998])

]

]

For iterative BMC: Solution caching
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Efficient quantifier handling: Thresholding

Given:

B 0= Ixe{0,1} do06),1,04py €{0,T}:

(x >0V 2a-sin(4b) > 3) A (y >0V 2a-sin(4b) < 1),
m |ower threshold t; = 0.3,
m upper threshold t, = 0.5.

Objective:

? ?

B Pr(®)<t or Pr(®)>t, or compute t; <Pr(®)<t,

M. Frénzle (University of Oldenburg) BMC of Hybrid Systems
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Efficient quantifier handling: Thresholding

O = Ixe{0,1} dyo,06),1,04)Y €{0,1}:
(x >0V 2a-sin(4b) > 3) A (y >0V 2a-sin(4b) < 1)

iSAT:
2a-sin(4b) < 1
satisfiable

Pruning occurs

® when satisfaction probability of investigated branches > t,,
® when probability mass of remaining branches < t;,
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Case study: Discrete-time system model
network
delay:

execution
PLC-IO

90%: 1ts
10%: 2 ts

PLC Uoocco‘ J

699 lu 470 lu Olu

® continuous dynamics of conveyor: % =v, ‘j—¥ =a

~ s =s+Vv-At+ 5 a- A,V =v+a-At

discrete computations updating decel. a, communicating, ...
discrete probabilistic choices: network delays

parallel composition of subsystems: Sensors, network, PLC,
PLC-IO, conveyor
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® 10 concurrent automata (incl. PLC, time progress)

6075 locations in product automaton

12 Boolean variables for synchronization

discrete state space: 212 x 6075 > 2.4 x 107

®m continuous state space spanned by 23 real-valued variables

SSMT provides a symbolic approach to probabilistic bounded
reachability analysis of PHA alleviating state explosion
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Case study: Analysis

00045
iy aribution ——
network
00035
.
| %g .
uniformly distributed 699 Ilu 470 lu Olu 0.0005
over {923 lu,..., 900 Iu}
*s0 20 10 o 100 20 )
obi_pos

Goal: Determine wh. probab. of stopping close to drilling pos. sufficient

@ O find BMC unwinding depth k s.t. object has stopped
O i.e., find k s.t. Pr(PBMC(k)) = 1 with TARGET (x) :=tu_stop
~> holds for k = 44, total runtime 134 min (with thresholding)

9‘ TARGET (x) ‘ probability ‘ runtime ‘
100 > obj pos /A obj pos >0 | =0.397345[16,29] | 71 min
100 > obj _posAobj pos>0|>0.9 13 min
100 > obj _pos Aobj pos>0| > 0.95 11 min
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SSMT algorithm: Recent experimental results

1000 ¢

g .
3 -
- 100 @ .
@
£ § /
g J ¥
s
2 / .
a4 - Basic —+—
WE//fs -~ Basic+Accur0.1
/ - Basic+SDB =
ia ." Basic+SDB+PrLearn &
¥ /! Basic+SDB+PrLearn+ActHeu —=—

/ : Baslc+$DB+PrLearn+AclHeu+Accur0 1
ja S BaSIC+SDB+PrLearn+Ac{Heu+THO 5

5 10 15 20 25 30
unwinding depth

Accuracy reduction far less effective than accuracy-preserving optimizations!

| depth 9 || Basic || B+Accur0.1 || B+SDB | +PrLearn | +ActHeu | +THO0.5 |
runtime 2160.99 392.65 100.64 23.53 9.12 1.73
[sec]
speed-up 1 5.5 21 92 237 1249
wrt. basic
Result exact safe approx. exact
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Quantitative Analysis 2:
From Falsification to Verification

Verifying Requirements on Expected Values
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Rationale for Conditional Expectations

Observation: ® Reachability probabilities tend to 1 in the long run,
thus are not a sufficiently discriminative measure in
practice.

m Reliability engineers prefer other measures, like
MTTEF.

Question: ® Could we use BMC to compute MTTFs, etc., of
PHA?

Result: ® Yes, with only minor adaptations to previous
procedure.
m And this converts BMC into a verification procedure!

Sometimes, it suffices to just pose the right questions!
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Expected Cost Values of Weighted PHA

x =x
cost =0

Semantics: Step costs accumulate along runs.

Quest: Determine whether minimum (wrt. possible adversaries)
expected cost for reaching a given set of target states is
acceptably high, i.e. exceeds a threshold.

Example: ®» Cost is step duration, Expectation =
target states = failures ~~  MTTF
m Want to verify that MTTF exceeds requirements,
irrespective of actual use case / adversary.

Can BMC verify that expectation on monotonic costs exceeds bound?
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Expected Cost

@ The cost expectation under adversary adv : States — Tr is the least
(wrt. the product order) solution of the equation system

0 if z = target
cost of
transition
t(t,p,z)
cost(t,p,z
CEaav(z) = P(t . )
o) pE%Ct PO | 4 CE ()
probability
of transition cost expect.
variant of successor
if z £ target

z€ States

with t = adv(z), and (z,z') = trans(t,p).

® The minimum (maximum, resp.) cost expectation for reaching
target from state s is inf ;5. 5tates—Tr CEado(S)
(Supadv:States—)TT CEqan(s), resp.).
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Unravelling the Probabilistic Transition Tree

Step 0

.
.
.
@
@

Step 0.5 X
O
S

g
iy
§
5

P,

LOL®HE

m Costs on branches which have hit the target are known.
m Costs on “open” branches can be safely estimated from below by
cost accumulated at the horizon.
~> Yields bounded cost expectation CE;, which converges
monotonically against unbounded cost expectation when k — oo.
m CEy is easy to encode in (suitably enhanced) SSMT
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Empowering SSMT

Hios05,1505%1 € {0, 1} Ixg € {0, 1} Hpp0.81502%3 € {0, 1}
M=1Vx=1Vx=0A(x=1Vxy=0Vx3s=1)Ay=4-x + (x4+x3)%)

maximum probability of satisfaction maximum conditional expectation of y € [0, 8]

Caution: Pruning rules are substantially different with cost expectations!

Can thus compute min CEy (with universal quantifiers)

and max CEy (with existential quantifiers) by SSMT.
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Expectations vs. BMC Unwinding Depth

Benchmark Results from NAS Case Study

1000
800
<
S 600
8 400
g8

200
0

5 10 15 20 25 30 35 40 45 50
25
20
B 15
2 10
5
0

5 10 15 20 25 30 35 40 45 50
50
40
2 30
£ 20
10
0

5 10 15 20 25 30 35 40 45 50

number of transition steps

Monotonically decreasing costs have been normalized by multiplication with —1.
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BMC-Based Verification

Observations:

@ min CEy and max CEy can be determined by SSMT.
@® For k — oo, min CEy / max CEy converges
O monotonically from below against the minimum /
maximum cost expectation if step cost is non-negative,
0 monotonically from above against the minimum
/maximum cost expectation if step cost is non-positive.

Consequence: Can employ the SSMT-encoding of CEy together with
SSMT-Solving for verification of the following proof
obligations:

m Given a non-negatively weighted PHA A and 6 € Q,
determine whether the minimum / maximum
unbounded cost expectation CE > 0.

m Given a non-positively weighted PHA A and 6 € Q,
determine whether the minimum / maximum
unbounded cost expectation CE < 0.
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Impact of Pruning

Benchmark Results from NAS Case Study

Drilling position Time to stop
6000 6000
5000 5000
4000 4000
g g
g 3000 g 3000
€ €
H 2 3 2
2000 s 2000 ki
g 3
1000 5 1000 5
H &
0 0
-200 0 200 400 600 800 1000 0 20 40 60 80 100
thresholds thresholds

B Maximum runtime = runtime for computing exact reach probability,
no genuine overhead due to computing expectations.

® Pruning effective when deciding excess of expectation threshold.
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Discussion

Ultimate Goal:

B Symbolic (wrt. both discr. and contin. state components) analysis of HA
and PHA wrt. qualitative and quantitative requirements

Approach:

® Symbolic encoding of depth-bounded unwindings of the transition system
as (stochastic) constraint problems involving contin. arithm. and ODEs;

B Extension of SAT-modulo-theory solving to non-linear constraints, ODEs,
and randomized quantification problems.

Current results:

B SMT solver supporting non-linear (in)-equational constraints over the
reals as theory, plus pre-post-relations mediated by ODEs

B SSMT solvers for the above, supporting alternating V, 3, ¥ quantifiers

® A symbolic procedure for bounded reachability of systems of
discrete-time as well as dense-time HA and PHA

B A symbolic procedure for computing (in the limit exact) lower bounds for
expected values of monotonic costs in PHA

B [argest probabilistic instance solved: Prob. reachability for dense-time
model of NCS w. message loss, 12 parallel automata, yielding 2.008 - 10¢
discr. locations, 6 integers, 4 cont. variables, 2 governed by ODEs,
unwinding depth 500 = 500 o quantifiers (no non-determinism)

Future work:

® Quantitative verification by probabilistic interpolation
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