
Verification of Security Protocols∗

Véronique Cortier
LORIA, CNRS, Nancy, France

Security protocols are short programs aiming at securing communications
over a network. They are widely used in our everyday life. They may achieve
various goals depending on the application: confidentiality, authenticity, privacy,
anonymity, fairness, etc. Their verification using symbolic models has shown its
interest for detecting attacks and proving security properties. A famous example
is the Needham-Schroeder protocol [7] on which G. Lowe discovered a flaw 17
years after its publication [5]. Secrecy preservation has been proved to be co-NP-
complete for a bounded number of sessions [8], and decidable for an unbounded
number of sessions under some additional restrictions (e.g. [1, 3, 4, 9]). Many
tools have also been developed to automatically verify cryptographic protocols
like [6, 2].

In this tutorial, we first overview several techniques used for symbolically
verifying security protocols that have led to the design of many efficient and
useful tools. Various formal models have been proposed for representing security
protocols. They all have in common that messages are represented by terms,
preserving the structure of messages but abstracting away all implementations
details of the functions such as encryption, signatures or Exclusive Or. We will
see how the analysis of security protocols then reduces to solving constraint
systems or resolving (fragment of) Horn clauses.

However, the guarantees that symbolic approaches offer have been quite
unclear compared to the computational approach that considers issues of com-
plexity and probability. This later approach captures a strong notion of secu-
rity, guaranteed against all probabilistic polynomial-time attacks. In a second
part of the tutorial, we present recent results that aim at obtaining the best of
both worlds: fully automated proofs and strong, clear security guarantees. The
approach consists in proving that symbolic models are sound with respect to
computational ones, that is, that any potential attack is indeed captured at the
symbolic level.

References

[1] R. Amadio and W. Charatonik. On name generation and set-based analysis
in the dolev-yao model. In Proc. of the 13th International Conference on
Concurrency Theory (CONCUR’02), LNCS, pages 499–514. Springer Verlag,
2002.

∗This work has been partially supported by the ANR-07-SESU-002 project AVOTÉ.



[2] B. Blanchet. An efficient cryptographic protocol verifier based on pro-
log rules. In Proc. of the 14th Computer Security Foundations Workshop
(CSFW’01). IEEE Computer Society Press, June 2001.

[3] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tag-
ging enforces termination. In A. Gordon, editor, Foundations of Software
Science and Computation Structures (FoSSaCS’03), volume 2620 of LNCS,
April 2003.

[4] H. Comon-Lundh and V. Cortier. New decidability results for fragments
of first-order logic and application to cryptographic protocols. In Proc. of
the 14th Int. Conf. on Rewriting Techniques and Applications (RTA’2003),
volume 2706 of LNCS, pages 148–164. Springer-Verlag, 2003.

[5] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In T. Margaria and B. Steffen, editors, Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’96), volume 1055 of
LNCS, pages 147–166. Springer-Verlag, march 1996.

[6] G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc.
of 10th Computer Security Foundations Workshop (CSFW’97), Rockport,
Massachusetts, USA, 1997. IEEE Computer Society Press. Also in Journal
of Computer Security, Volume 6, pages 53-84, 1998.

[7] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communication of the ACM, 21(12):993–999, 1978.

[8] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of
sessions and composed keys is NP-complete. Theoretical Computer Science,
299:451–475, 2003.

[9] H. Seidl and K. N. Verma. Flat and one-variable clauses: Complexity of
verifying cryptographic protocols with single blind copying. In Logic for
Programming and Automated Reasoning (LPAR’04), LNCS, pages 79–94.
Springer-Verlag, 2005.


