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Security protocols are short programs aiming at securing communications
over a network. They are widely used in our everyday life. They may achieve
various goals depending on the application: confidentiality, authenticity, privacy,
anonymity, fairness, etc. Their verification using symbolic models has shown its
interest for detecting attacks and proving security properties. A famous example
is the Needham-Schroeder protocol [7] on which G. Lowe discovered a flaw 17
years after its publication [5]. Secrecy preservation has been proved to be co-NP-
complete for a bounded number of sessions [8], and decidable for an unbounded
number of sessions under some additional restrictions (e.g. [1, 3, 4, 9]). Many
tools have also been developed to automatically verify cryptographic protocols
like [6, 2].

In this tutorial, we first overview several techniques used for symbolically
verifying security protocols that have led to the design of many efficient and
useful tools. Various formal models have been proposed for representing security
protocols. They all have in common that messages are represented by terms,
preserving the structure of messages but abstracting away all implementations
details of the functions such as encryption, signatures or Exclusive Or. We will
see how the analysis of security protocols then reduces to solving constraint
systems or resolving (fragment of) Horn clauses.

However, the guarantees that symbolic approaches offer have been quite
unclear compared to the computational approach that considers issues of com-
plexity and probability. This later approach captures a strong notion of secu-
rity, guaranteed against all probabilistic polynomial-time attacks. In a second
part of the tutorial, we present recent results that aim at obtaining the best of
both worlds: fully automated proofs and strong, clear security guarantees. The
approach consists in proving that symbolic models are sound with respect to
computational ones, that is, that any potential attack is indeed captured at the
symbolic level.
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