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Abstract. We report on recent progress in the study of infinite tran-
sition systems for which interesting properties (like reachability of des-
ignated states) can be checked algorithmically. Two methods for the
generation of such models are discussed: the construction from simpler
models via operations like unfolding and synchronized product, and the
internal representation of state spaces by regular sets of words or trees.

1 Introduction

The method of model-checking has developed largely in the domain of finite sys-
tem models, and its success in industrial applications is built on highly efficient
data structures for system representation. Over infinite models, the situation is
different, and for practical applications the field is still in its beginnings. Even
simple properties may be undecidable over infinite state spaces, and thus a care-
ful preparatory analysis is necessary in order to determine the possible range of
fully automatic verification.

The purpose of the present short survey is to report on some techniques
which yield classes of infinite models such that the model-checking problem is
decidable for interesting properties. Our presentation is far from complete; it
is biased towards results which were obtained in the author’s research group
and collaborations with other groups (mostly that of D. Caucal, Rennes). We
focus on system models in the form of edge-labelled transition graphs; thus a
central aspect is the investigation of structural properties of infinite graphs. An
alternative and equally fundamental approach for introducing infinite models,
which is not discussed in this paper, is to extend finite transition graphs by
infinite data structures, for example over the natural or real numbers (as in
timed systems).

Transition graphs are considered in the format G = (V, (Ea)a∈Σ) where V is
the set of states (vertices) and where Ea (for a symbol a from a finite alphabet
Σ) is the set of a-labelled edges. We write E for the union of the Ea. State-
properties may be introduced by subsets Va of V , where a is from a second label
alphabet Γ .

The logics we consider allow to express the reachability relation E∗, the reflex-
ive transitive closure of E, since reachability is the most fundamental property
arising in verification. A prominent logic of this kind is monadic second-order
logic MSO. It encompasses most standard temporal logics. On the other end,
as a kind of minimal logic in this context, we consider FO(R) (”first-order logic



with reachability”), the extension of first-order logic by a relation symbol for
E∗.

We shall address two methods for constructing infinite transition graphs
where model-checking (with respect to MSO or FO(R)) is decidable. First we
review the effect of fundamental model constructions – namely, interpretation,
unfolding, and synchronized product – on the existence of model-checking pro-
cedures. Secondly, we discuss model-checking as based on “regular” internal rep-
resentations of infinite transition graphs, using finite automata over strings or
trees, respectively.

2 Operations on graphs

2.1 Interpretations

Rabin’s Tree Theorem [19] states that the MSO-theory of the infinite binary
tree T2 is decidable (or in other terminology: that model-checking the binary
tree with respect to MSO-properties is decidable). We can view T2 as a graph
({1, 2}∗, S1, S2), where {1, 2}∗ is the set of vertices and S1, S2 the successor
relations with Si = {(v, vi) | v ∈ {1, 2}∗}. Many other theories were shown
decidable (already in [19]) using interpretations in the tree T2. To show that the
model-checking problem for a structure S with respect to formulas of a logic L

is decidable one proceeds as follows: One gives an MSO-description of S within
the binary tree T2, and using this one provides a translation of L-formulas ϕ into
MSO-formulas ϕ′ such that S |= ϕ iff T2 |= ϕ′. Taking L = MSO, we see that
an MSO-interpretation (i.e., a model description using MSO-formulas) preserves
decidability of model-checking with respect to MSO-formulas.

As a simple example of interpretation consider the n-ary branching tree Tn

(for n > 2), with vertices in the set {1, . . . , n}∗ rather than {1, 2}∗ as for T2. We
may represent the vertex i1 . . . ir of Tn by 1i12 . . . 1ir2 in T2. It is easy to give an
MSO-definition of the range of this coding in T2 and to supply the translation
ϕ 7→ ϕ′ as above. As a second example, consider a pushdown automaton A

with stack alphabet {1, . . . , k} and states q1, . . . , qm. Let GA = (VA, EA) be
its configuration graph; here VA consists of A-configurations (qj , i1 . . . ir) (with
state qj and stack content i1 . . . ir, reading i1 as top symbol), and we restrict to
those configurations which are reachable from the initial one (say (q1, 1)). The
edge relation EA is the one-step transition relation of A between configurations.
Choosing n = max(k,m), we can exhibit an MSO-interpretation of GA in Tn:
Just represent configuration (qj , i1 . . . ir) by the vertex ir . . . i1j of Tn. Note that
then the A-steps lead to local moves in Tn, from one Tn-vertex to another, e.g. in
a push step from vertex ir . . . i1j to a vertex ir . . . i1i0j

′. These moves are easily
definable in MSO, and reachability (from the initial vertex 11) as well. Due to
this interpretation, we obtain the fundamental result of Muller and Schupp ([18]):
For the configuration graph of a pushdown automaton, checking MSO-properties
is decidable.

It is known that the ε-closures of the pushdown transition graphs capture
precisely those graphs which are MSO-interpretable in T2 (or equivalently in Tn);



see Section 3 below. We do not consider here a slightly more general version of
MSO-interpretation, the “MSO-definable transduction” in the sense of Courcelle
[7]; such a transduction from S to T involves a description of S in a k-fold copy
of T rather than T itself.

2.2 Unfoldings

In the previous section we explained how to generate a model “within” a given
one, via defining formulas. A more “expansive” way of model construction is the
unfolding of a graph (V, (Ea)a∈Σ) from a given vertex v0, yielding a tree TG(v0) =
(V ′, (E′

a)a∈Σ): V ′ consists of the vertices v0a1v1 . . . arvr with (vi−1, vi) ∈ Eai
,

and E′

a contains the pairs (v0a1v1 . . . arvr, v0a1v1 . . . arvrav) with (vr, v) ∈ Ea.
The unfolding operation has no effect in bisimulation invariant logics, but is
highly nontrivial for MSO. Consider, for example, the singleton graph G0 over
{v0} with a 1-labelled and a 2-labelled edge from v0 to v0. Its unfolding is the
infinite binary tree. While checking MSO-formulas over G0 is trivial, this is quite
difficult over T2. A powerful result due to Courcelle and Walukiewicz [8] says: If
model-checking MSO-formulas over G is decidable and v0 is an MSO-definable
vertex of G, then model-checking MSO-formulas over TG(v0) is decidable. The
result holds also for a slightly more general construction (“tree iteration”) which
can also be applied to relational structures other than graphs (see [1, 24]).

MSO-interpretations and unfoldings are two operations which preserve decid-
ability of MSO model-checking. Caucal [4] studied the structures generated by
applying both operations, alternating between unfoldings and interpretations.
(In [4] a more special type of interpretation was used; the link to MSO was
supplied by Carayol and Wöhrle in [9]; for a detailed treatment see [25].) Start-
ing with the class of finite graphs, one first obtains the regular infinite trees by
unfoldings, then a class of graphs containing all pushdown transition graphs by
interpretations, then the algebraic trees by unfoldings, and so on. The process
yields many more complicated structures, all with a decidable MSO-theory. It
is known that this “Caucal hierarchy” of graphs and trees is strict and quite
rich, but we do not really have an overview which structures belong to it. An
introduction with some examples is given in [23]. We also know of a few infinite
graphs outside the Caucal hierarchy which still have a decidable MSO-theory
(see [9]).

A related problem is to find more extensive classes of transition graphs for
which the unfolding operation also preserves decidability of model-checking, but
now for suitably chosen weaker logics than MSO. Note that MSO covers more
than reachability properties (for example, one can express the existence of global
colorings satisfying local constraints) and thus is more expressive than needed
for many practical purposes.

2.3 Products

Products of transition graphs with different synchronization constraints are ubiq-
uitous in system modelling, in particular for representing distributed systems.



While this construction causes fundamental complexity problems when the com-
ponents are finite-state (“state space explosion”), undecidability may arise over
infinite state spaces.

As an example, consider the successor structure (IN, S) over the natural num-
bers with S = {(i, i + 1)|i ∈ IN}, whose MSO-theory is known to be decidable
(Büchi’s Theorem; see [21]). The asynchronous product of (IN, S) with itself is
the structure (IN × IN, E) where ((i, j), (k, l)) ∈ E iff either i = k and l = j + 1,
or j = l and k = i + 1. This is the infinite grid, where the model-checking
problem with respect to MSO-properties is undecidable (see e.g. [21]). Thus, if
product formation should preserve decidability of model-checking, then MSO is
too strong.

If products should preserve decidability of model-checking, the task is to com-
pose model-checking algorithms for the component structures to a corresponding
algorithm for the product. Such composition results have a long tradition in logic,
starting with the work of Feferman and Vaught [11] in first-order model theory.
The situation is more complicated when second-order aspects enter (as involved
in reachability properties).

Builing on the approach of [11], a preservation result on decidability of model-
checking is shown in [26] for the logic FO(R) (first-order logic with reachabil-
ity). In each component graph Gi (1 ≤ i ≤ n), synchronizing and local ac-
tions are distinguished by a partition of the label alphabet Σi. Transitions may
be executed locally via local labels, or else via a “synchronization constraint”
(c1, . . . , cn) where each ci is either a synchronizing label or ε. A corresponding
execution leaves the states identical in the components with entry ε and in-
volves a ci-transition for each of the other components Gi. We speak of a finitely
synchronized product if for each constraint (c1, . . . , cn) and each ci 6= ε, only
from finitely many vertices in Gi a ci-labelled transition exists. This assump-
tion applies to products of infinite systems where synchronization can only be
realized within finite parts of the components. In [26], the following is shown: If
the graphs G1, . . . , Gn have a decidable model-checking problem with respect to
FO(R)-specifications, then this holds also for any finitely synchronized product
of the Gi.

This result is sharp in several ways. First, the assumption on finite syn-
chronization cannot be weakened. If there is just one component which shares
infinitely many synchronized transitions, the result fails. Also it is not possible
to generalize the logic in any essential way; for example, the result fails if the
reachability operator is restricted to regular sets of label sequences or if universal
path quantification enters (see [26, 20]).

In all the decidability results mentioned above, very high lower bounds for
the complexity are known. One of the main tasks in the field is to single out
cases which are both practically significant and at the same time allow more
efficient procedures than those derived from the first decidability proofs.



3 Regular presentations

Automata provide a natural framework for finite representations of infinite struc-
tures. For graphs (V,E), the idea is to represent the vertex set as a regular lan-
guage and the edge set by some sort of “regular relation”. Since there are many
versions of finite-state transducers, there are several options for the latter; for an
introduction see e.g. [22]. One choice, leading to the “automatic structures”, is
based on the “automatic” (or “synchronized rational”) relations. Here an edge
relation E is defined by an automaton which processes a given word pair (u, v)
synchronously in both components letter by letter (and one assumes that, if nec-
essary, a dummy letter is used to extend the shorter word to the same length
as the longer word). An automatic structure has a decidable first-order theory
(see [2]); however, already the point-to-point-reachability problem (“Given ver-
tices u, v, is there a path from u to v?”) may be undecidable for an automatic
structure. As an example, one can use the transition graph U of a universal
Turing machine: Its configuration space is a regular language, and the one-step
relation between configurations is clearly automatic. The halting problem for
Turing machines can be reduced to the point-to-point reachability problem over
U .

The one-step transition relation over Turing machine configurations is an in-
fix rewriting relation. Restricting to prefix rewriting, as it occurs in pushdown
transition graphs, the reachability problem becomes decidable. This follows al-
ready from classical work of Büchi [3] on his “regular canonical systems”. If for
the graph G = (V, (Ea)a∈Σ) the vertex set is presented as a regular language,
and the edge relations Ea by finite prefix-rewriting systems, then G has a de-
cidable MSO-theory; this is shown by an interpretation in T2 as in Section 2.1
above. As observed by Caucal [5], the prefix-rewriting rules can even be general-
ized to the form U1 → U2 for regular sets U1, U2, meaning that a prefix u1 ∈ U1

can be replaced by any u2 ∈ U2. The “prefix-recognizable” graphs arising this
way coincide with those which can be obtained from the binary tree T2 by an
MSO-interpretation (see, for example, [15]).

The idea of prefix-rewriting underlies many decidability results in infinite-
state model-checking. It can be generalized in several ways while keeping (at
least some of) the mentioned decidability properties. We present two such gen-
eralizations, the higher-order pushdown systems, and the ground tree rewriting
graphs.

3.1 Higher-order pushdown systems

Higher-order pushdown automata are a classical model of computation which
arises in the evaluation of higher-order recursion schemes (see [10, 14]). The idea
is to generalize the stack symbols of a pushdown automaton to be again of stack
format, and so on iteratively, which yields stacks of stacks of stacks etc. If k

levels of stacks occur, we speak of a level-k pushdown automaton. For example,
in a transition of a level-2 pushdown automaton, one can access the topmost
symbol of the topmost stack, can modify the topmost stack in the usual way, or



can execute global operations on the topmost stack, by deleting it or adding a
copy of it as new topmost stack.

The configuration graphs of higher-order pushdown automata, called higher-
order pushdown graphs, are of bounded out-degree (since only finitely many
successor configurations can be reached directly from a given one). When we
consider the ε-closure, i.e. we allow ε-moves and compress sequences of ε-moves
into a single transition, then transition graphs of infinite degree are generated.
Surprisingly, the hierarchy of these transition graphs (for increasing level k)
coincides with the Caucal hierarchy of graphs mentioned in Section 2.2: In [9]
(and with full proof in [25]) it is shown that a graph can be generated from
finite graphs by k applications of unfolding and MSO-interpretation iff it is the
transition graph of the ε-closure of a level-k pushdown automaton. Of course,
it follows that model-checking a higher-order pushdown graph with respect to
MSO-properties is decidable.

3.2 Ground term rewriting graphs

The transition graphs generated by higher-order pushdown automata are still
tightly connected with infinite trees – in fact, they can be generated for a given
level k from a single tree structure via MSO-interpretations. So these graphs are
too restricted for many purposes of verification (excepting applications on the
implementation of recursion).

A more flexible kind of model is generated when the idea of prefix-rewriting
is generalized in a different direction, proceeding from word rewriting to tree
rewriting (which we identify here with term rewriting). Instead of modifying the
prefix of a word by applying a prefix-rewriting rule, we may rewrite a subtree
of a given tree, precisely as it is done in ground term rewriting. A ground term
rewriting graph (GTRG) has a vertex set V which is given by a regular tree
language, and each edge relation Ea is defined by a finite ground term rewriting
system.

A simple example of a GTRG is the infinite grid: It is generated from the tree
f(c, d) by applying the rules c → g(c) and d → g(d), which produces the trees
f(gi(c), gj(d)) in one-to-one correspondence with the elements (i, j) of IN × IN.
Thus over GTRG’s, model-checking MSO-properties is in general undecidable.

In work of C. Löding (see [16, 17]), the structural and logical properties
of GTRG’s are investigated. As it turns out, the model-checking problem over
GTRG’s is decidable for a logic which covers reachability and even recurrent
reachability. The atomic formulas of this logic refer to regular state properties
(specified by finite tree automata), and the connectives are, besides the boolean
ones, EXa, EF , and EGF (in CTL-like notation). This result is optimal in the
sense that adding universal quantification (for example, when adjoining the op-
erator AF ) leads to undecidability of the model-checking problem. On the other
hand, it is possible – as for pushdown graphs – to generalize the rewriting rules
without affecting the decidability results: Instead of allowing replacement of a
single subtree by another one, one may use rules of the form T → T ′ for regular



tree languages T, T ′, meaning that an occurrence of subterm t ∈ T can be re-
placed by any t′ ∈ T ′. More results, also connecting GTRG’s with asynchronous
products of pushdown graphs, are shown in [6].

4 Conclusion

The above-mentioned results are as yet mosaic pieces of a picture which hopefully
will grow into an esthetically pleasing and practically useful algorithmic theory
of infinite models (which the author would call “algorithmic model theory”). It
seems that the two approaches mentioned – global model construction and local
descriptions based on automata theoretic concepts – can be developed much
further and also be combined in new ways.

There is, of course, a different approach for infinite-state model-checking,
based on the admission of infinite data structures (like counters over the natural
numbers, or addition and inequalities over the real numbers). An interesting
direction of current work aims at establishing bridges between that approach
and the results treated in the present paper. As an example, we mention the
recent paper [13] where transition graphs arising from monotonic counters are
discussed.

A dual track of research is to destillate efficient model-checking procedures
from the general decidability results mentioned above, by restricting both the
models and the logics to simple but relevant cases.
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