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Abstract

We investigate algorithmic properties of infinite transition graphs that are gener-
ated by rewriting systems over unranked trees. Two kinds of such rewriting systems
are studied. For the first, we construct a reduction to ranked (binary) trees via an
encoding and to standard ground tree rewriting, thus showing that the generated
classes of transition graphs coincide. In the second rewriting formalism, we use sub-
tree rewriting combined with a new operation called flat prefix rewriting and show
that strictly more transition graphs are obtained while the reachability problem re-
mains decidable.

1 Introduction

One of the main trends in verification is the field of infinite state model checking, in
which procedures (and limits to their applicability) are developed to check systems
with infinite state spaces against formal specifications (for a survey on infinite graphs
cf. [22]).

In automatic verification, checking whether a system can reach an undesirable
state or configuration translates to the reachability problem “Given a finite represen-
tation of an infinite graph G and two vertices u, u′ of G, is there a path from u to u′?”.
From this point of view, an important task in the development of a theory of infinite
graphs is to identify classes of infinite graphs where such elementary problems like
reachability are decidable.

The strong formalism of monadic second-order logic (MSO) subsumes temporal
logic (cf. [12]) and thus allows to express reachability properties. A well-known rep-
resentative of a class of graphs with decidable MSO theory is the class of transition
systems generated by pushdown automata (cf. [18]). Furthermore, Caucal showed
in [5] that applying the formalisms of interpretation and unfolding in alternation,
one obtains a “pushdown hierarchy” of graph classes, throughout which the decid-
ability of MSO is preserved. Although this hierarchy is very rich and contains a lot
of graphs, grid-like structures are not captured.

In order to compensate this weakness, a different approach of generating transi-
tion systems is to employ ranked trees (or terms) as the basic objects of the rewriting
formalism, as already considered in [2]. Thereby, the internal structure of the trees
is not the main point of interest, but the different rewriting operations that can be
applied on trees. Consequently, the vertices of the generated infinite graphs are rep-
resented by ranked trees, while the edge relation is induced by (simple) tree opera-
tions.
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Among attractive subclasses of rewriting systems, an interesting and practical
subclass is made up by the ground tree rewriting systems (which contain the infi-
nite grid as transition graph; for an extensive analysis cf. [17]). “Ground rewriting”
means that no variables occur in the rules, thus in ground tree (or term) rewriting
systems, only explicitly specified subtrees can be replaced by other explicitly speci-
fied subtrees. Though in general MSO is undecidable for transition graphs of ground
tree rewriting systems, there is a decidable logic that allows to express reachability
problems: first-order logic with the reachability relation [11]. In [15, 17] the structure
of the transition graphs of ground tree rewriting systems and their relation to other
classes of infinite graphs, in particular to pushdown graphs was studied. Further-
more, in [16, 17] several variants of the reachability problem for this class of graphs
were investigated and a decidable logic was defined for the class of (regular) ground
tree rewriting graphs.

For many applications however, the modelling of system states, messages, or
data by ranked trees is not the most intuitive approach (if not impossible as e.g. the
modelling of associative operations), since every symbol is of a fixed arity. Thus,
our aim is to investigate a possible propagation of the idea of ground tree rewriting
systems to the case of unranked trees. Briefly, unranked trees are finite labeled trees
where nodes can have an arbitrary but finite number of children, and no fixed rank
is associated to any label.

In this paper, we investigate to which extent results for ground tree rewriting sys-
tems are transferable to the unranked case. Note however, that the direct adaption
of this rewriting principle is not of interest: When starting from a fixed initial tree
and applying a finite set of rewrite rules with constant trees, the resulting trees are
of bounded branching and hence can be traced to the case of ground tree rewriting
over ranked trees. Another natural approach to handle unbounded branching of un-
ranked trees is to encode unranked trees as binary trees. Using this formalism, we
show that there is a class of rewriting systems over unranked trees, which will be
called partial subtree rewriting systems, that generates the same class of infinite graphs
as ground tree rewriting systems over ranked trees.

However, encodings are problematic as they alter locality and path properties.
This means that this approach blurs a decisive point, namely the separation of two
types of unboundedness: one is derived from the arbitrariness of “hierarchy levels”
(represented by the height of the tree) while the other unboundedness refers to the
number of data on the same hierarchy level. Pursuing the latter aspect, we define a
new class of rewriting systems over unranked trees, the subtree and flat prefix rewrit-
ing systems, which combine ground tree rewriting with prefix word rewriting on the
“flat front” of a tree. Here, by a flat front we indicate a sequence of children of a
node, all of which are leaves. With this approach related to ground tree rewriting,
we obtain a class of infinite graphs which has a decidable reachability problem. Fur-
thermore, analogous to regular ground tree rewriting systems over ranked trees, a
regular variant of these rewriting systems is considered.

On introducing a constraint relying on the inner structure of the vertices of the
transition graphs (i.e. the trees) to the reachability problem, we discover that the
decidability of this problem fails for the introduced rewriting formalisms while it
remains decidable for ground rewriting on ranked trees. After introducing the basic
terminology in Section 2, the class of transition graphs of partial subtree rewriting
systems is treated in Section 3. We show that this class coincides with the class of
transition graphs of ground tree rewriting systems over ranked trees. Section 4 in-
troduces (regular) subtree and flat prefix rewriting systems, relates the classes of
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transition graphs to the previous ones, and investigates the decidability of the reach-
ability problem over the transition graphs of (regular) subtree and flat prefix rewrit-
ing systems. Section 5 concludes with a short summary and points to further aspects
of interest.

2 Preliminaries

It is assumed that the reader is familiar with the basic notions of automata theory and
regular languages (for an introduction cf. [14], for automata on ranked trees cf. [7],
and on unranked trees cf. [3]).

An unranked tree over an alphabet Σ is a mapping from a nonempty finite domain
domt ⊆ N

∗ to Σ, where domt is prefix closed and it holds that if xi ∈ domt then
xj ∈ domt for x ∈ N

∗, i ∈ N, and j ≤ i. In an unranked tree, each node may have
an arbitrary but finite number of successors. If the root of a finite tree t is labeled
by a ∈ Σ and has k successors at which the subtrees t1, . . . , tk are rooted, then t can
be written as the term a(t1, . . . , tk). The set of unranked trees over an alphabet Σ is
denoted by TΣ.

The subtree t�x of t is a tree rooted at node x ∈ domt (i.e. t�x(u) = t(xu) for xu ∈
domt). The height of a tree is defined as ht(t) := max{|x| | x ∈ domt}; if a tree t is of
height 1, the word derived from the front (i.e. the sequence of leaves read from left
to right) of t is called the flat front.

A hedge as introduced by Courcelle [9] is a (possibly empty) finite ordered se-
quence of trees. The width of a hedge is defined as the number of trees that are
contained in the sequence; consequently, a tree is a hedge of width 1.

A nondeterministic bottom up tree automaton (N�TA) on unranked trees is of the
form A = (Q, Σ, ∆, F) over an unranked alphabet Σ, with a finite set Q of states, a
set F ⊆ Q of final states, and a finite set of transitions ∆ ⊆ REG(Q) × Σ × Q, where
REG(Q) denotes the class of regular word languages over Q, which are given for
single transitions e.g. by a nondeterministic finite (word) automaton (NFA). A run
of A on t is a mapping ρ : domt → Q such that for each node x ∈ domt there is a
transition (L, t(x), ρ(x)) ∈ ∆ such that the sequence q1 · · · qn of states formed by the
run at the successors of x is a word in L. Thus, an N�TA employs NFAs that read the
successor sequence of a node, and decide with this word and the label of the current
node which state to assign to the current node.

As usual, a run is accepting if the root is labeled with a final state, and the accepted
language T(A) contains all trees for which there is an accepting run. If there is a run
labeling the root with state q then we write A : t →∗ q.

We also use an extended model (denoted by ε-N�TA) with ε-transitions from the
set Q × Q with the standard semantics.

A tree is called ranked if every symbol a ∈ Σ is assigned a unique arity rk(a) ∈ N,
and each node labeled with a has exactly rk(a) successors.

A ground tree rewriting system (GTRS) over ranked trees is defined as a tuple R =
(Σ, Γ, R, tin), with ranked alphabet Σ, transition alphabet Γ, finite set R of rules of the

form s
σ

↪→ s′ with s, s′ ∈ TΣ, σ ∈ Γ, and initial tree tin ∈ TΣ. A rule s
σ

↪→ s′ ∈ R is
applicable to a tree t if there is a node x ∈ domt with s = t�x, and the resulting tree is

t′ = t[x|s]. In this case, t′ is derived from t by the rule s
σ

↪→ s′ and we write t →σ
R t′.

The tree language that is generated by R is denoted T(R) = {t ∈ TΣ | tin →∗
R t}; the

focus of this paper will be the structure induced by the rewriting system with respect
to the tree language. This is a directed edge labeled transition graph GR = (VR, ER, Γ),
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of R with VR = T(R), and (t, σ, t′) ∈ ER iff t →σ
R t′. Note that the vertex set VR is

defined as the set of trees that are reachable from tin by repeated application of the
rewrite rules. The class of transition graphs of GTRSs is denoted by GTRG. For an
extensive survey on GTRG cf. [17].

One way of dealing with unranked trees is to encode them by ranked trees. We
use here a formalism proposed in [21], and employed as an encoding in [4], that uses
only one binary symbol corresponding to an operation for constructing unranked
trees. The extension operator @ : TΣ × TΣ → TΣ extends a given tree t by t′ by ad-
joining t′ as the next sibling of the last child of t: a(t1, . . . , tn) @ t′ = a(t1, . . . , tn, t′),
respectively for case n = 0 : a @ t′ = a(t′). Furthermore, this formalism can be
extended to hedges in the intuitive way. Note that every unranked tree can be gen-
erated uniquely from trees of height 0 using the extension operator: a(t1, . . . , tn) =
[(· · · (a @ t1) @ t2) · · · @ tn], and thus, this formalism can be used as an encoding of
unranked trees into binary ones (by assigning rank 0 to each symbol of the unranked
alphabet and rank 2 to the extension operator @).

3 Partial Subtree Rewriting Systems

As mentioned in the Introduction, the direct transfer of the ground tree rewriting
principle to unranked trees would result in bounded branching, therefore new rewrit-
ing principles have to be considered. The first rewriting principle considered aims at
an easy transfer of nice properties of GTRSs. Therefore, unranked trees are encoded
into ranked ones via the extension operator encoding as introduced in Section 2.
Subtrees of the tree obtained after the encoding are hereby mapped to partial sub-
trees including the root in the corresponding unranked tree. The rewriting system
therefore is defined such that exactly those partial subtrees are replaced.

Definition 3.1. The set TΣ, ξ is the set of all unranked trees over Σ with one occur-
rence of the variable ξ as leaf and rightmost child of the root. Thus, any tree t ∈ TΣ, ξ

can be written as t = t̄ @ ξ with t̄ ∈ TΣ.

Definition 3.2. A partial subtree rewriting system (PSRS) over unranked trees in TΣ is
of the form R = (Σ, Γ, R, tin), with an unranked alphabet Σ, a transition alphabet Γ,
a finite set of rules R, and an initial tree tin. The set R consists of subtree rewrite rules

over trees of TΣ, ξ of the form: r
σ

↪→ r′ with r, r′ ∈ TΣ, ξ and σ ∈ Γ.
A tree t′ is derived from t (t →σ

R t′), if there are a node x ∈ domt, a hedge h over

Σ, and a rule r
σ

↪→ r′ ∈ R, such that r[ξ|h] = t�x, and t[x|r′[ξ|h]] = t′ (cf. Figure 1).
The class of transition graphs of PSRSs is denoted by PSRG.

With these definitions it will be shown that PSRSs over unranked trees and GTRSs
over ranked trees generate the same transition graphs up to isomorphism.

Theorem 3.3. Partial subtree rewriting systems generate the same class of transition graphs
as ground tree rewriting systems (PSRG = GTRG).

PROOF (SKETCH). When unranked trees are encoded into ranked ones by the ex-
tension operator encoding, subtrees of the ranked encoding correspond exactly to
the partial trees of TΣ, ξ by construction. Thus applying a rule of a PSRS corresponds
to rewriting an entire subtree in the ranked tree obtained after the encoding. The
technical details of the construction of a GTRS for a given PSRS can be found in [20].
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Figure 1 Application of rewrite rule r
σ

↪→ r′ according to Definition 3.2.

σ
−→
R

t t′

r̄ r̄′

• •x x

··· ···

h h

Since ranked trees can be viewed as unranked trees, and since each symbol has a
unique rank, the construction of a PSRS R for a GTRS S = (Σr, Γ, S, tin) over ranked
alphabet Σr is straightforward. The ranks of the symbols are simply omitted, the
initial tree is kept, and the given rules of the GTRS are endorsed by extending the
trees in the rules with the variable ξ to obtain trees in TΣ, ξ . Consequently, with the
same initial tree for both rewriting systems, the variable ξ can only be substituted by
the empty hedge, thus resulting in isomorphic transition graphs. �

This class equivalence of GTRG and PSRG shows that by disregarding the inner
structure of the vertices (unranked vs. ranked trees), the transition graphs are of
identical structure.

Corollary 3.4. The first-order theory with reachability is decidable for PSRSs.

Additionally, several other decidability and undecidability results for GTRG can
be transferred to PSRG (cf. [2, 17]).

However, since an encoding of unranked trees as ranked ones does lose some
structural information, we want to mention a difference between the graph classes
GTRG and PSRG. Therefore, we consider deterministic top down tree automata (D�TA).
For the ranked case, this model decides which states to send to the successors of a
node depending on the current state, current label, and number of successors of the
current node. Although for unranked trees we allow a D�TA to additionally read
the successor sequence of the current node before proceeding and assigning states to
the successors, analogous to the ranked case, it is not strong enough to capture the
full class of regular unranked tree languages (cf. [10]). Thus, restricting the transition
graph of a rewriting system to the tree language T(A) of a D�TA A (i.e. each vertex of
the graph is in T(A)) results in a variant of the classical constraint reachability prob-
lem “Given a rewriting system R, vertex t, and regular sets T1, T2 of trees, is there
a path starting in t that only visits vertices of T1 until eventually reaching a vertex
of T2?”. The target set T2 remains regular, but with the restriction of the transition
graph, the set T1 is now the tree language recognized by a D�TA. This problem yields
different decidability results for the ranked and unranked setting. While from [6] it
follows that the reachability problem over the restricted graph remains decidable for
the ranked case (and GTRSs), it can be shown via a reduction to the halting problem
of Turing machines that this decidability result fails for the case of unranked trees
and PSRSs (cf. [20]).
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Figure 2 Application of rewrite rules of according to Definition 4.1.
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(a) Subtree substitution.
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u′
i

v

(b) Flat prefix substitution.

4 Subtree and Flat Prefix Rewriting Systems

In order to exploit the advantage of an arbitrary number of successors of each node,
subtree substitution is combined with flat prefix substitution. That means, for sub-
trees of height 1, a prefix of the successor sequence of this subtree can be replaced by
another sequence. It will be shown that this rewriting principle yields a new class of
transition graphs.

Definition 4.1. A subtree and flat prefix rewriting system (SFPRS) over unranked trees
in TΣ is of the form R = (Σ, Γ, R, tin), with a finite unranked alphabet Σ, a finite
transition alphabet Γ, an initial tree tin, and a finite set R of rules of two types:

1. subtree substitution (cf. Figure 2(a))

with rules of the form rj : sj
σ

↪→ s′j for j ∈ J, sj, s′j ∈ TΣ, σ ∈ Γ, and

2. flat prefix substitution at the flat front of the tree (cf. Figure 2(b))

with rules of the form ri : ui
σ

↪→ u′
i for i ∈ I, ui, u′

i ∈ Σ
+, σ ∈ Γ,

with I ∪ J = {1, . . . , |R|} and I ∩ J = 6O. The class of transition graphs of SFPRSs is
denoted by SFPRG.

A tree t′ is derived from t (t →σ
R t′) by applying a subtree rewrite rule rj, if there

is a node x ∈ domt with t�x = sj such that t[x|s′j] = t′ (cf. Figure 2(a)).

A tree t′ is derived from t by applying a prefix rewrite rule ri, if there are a node
x ∈ domt with ht(t�x) = 1 and flatfront(t�x) = uiv, a tree s ∈ TΣ with ht(s) = 1 and
s(ε) = t(x), flatfront(s) = u′

iv, such that t[x|s] = t′ for some v ∈ Σ
∗ (cf. Figure 2(b)).

Naturally, the definition of SFPRSs can be extended to regular SFPRSs by intro-
ducing regular sets of trees resp. words in the rules. Conversely, SFPRSs can be
regarded as the special case of singular sets in the rules of regular SFPRSs.

Note that the newly introduced prefix rewrite rules can be regarded as a kind
of synchronization: they can only be applied at a node x if all subtrees rooted at its
successors have a certain property, namely are of height 0. This kind of control is not
available for the previously considered rewriting systems.
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Figure 3 Transition graph of SFPRS R0.
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4.1 Classification of Transition Graph Classes

Towards a classification of the transition graph classes PSRG and SFPRG, consider
the SFPRS R0 = (Σ, Γ, R, tin) with Σ = {a, c, e}, Γ = {0, 1},

R = {r1 : c
1

↪→
e
|
e

, r2 : e
1

↪→
e
|
e

, r3 : c
0

↪→ cc} (I = {3}, J = {1, 2}), and tin =
a
\\

c c
,

whose transition graph is depicted in Figure 3.
Note that the 0-transition r3 can only be applied at the trees of the vertices on the

top line in Figure 3, since these are the only trees that have a subtree of height 1 with
flat front cw for w ∈ Σ

∗. For the transition graph this means that after traversing a
1-edge, no 0-edges are available any more.

Lemma 4.2. The transition graph of SFPRS R0 cannot be generated by a GTRS.

PROOF (SKETCH). Towards a contradiction: consider the vertex of the top row of
Figure 3 with n out edges with label 1 and one out edge with label 0. For the tree at
this vertex in a corresponding transition graph of a GTRS S , there have to be n dif-
ferent 1-transitions which rewrite the subtree available for the applicable 0-transition
in order to prevent a 0-transition afterwards. However, the number of nodes in the
tree where these 1-transitions have to be applied in order to fulfill this requirement
is bounded by the number of rewrite rules of S and the height of the trees of the left
hand sides of the rewrite rules of S . For n large enough this is a contradiction. �

Thus, the SFPRS R0 over unranked trees has a transition graph which cannot be
generated by a ground tree rewriting system over ranked trees. On the other hand,
every ground tree rewriting system can always be conceived as a SFPRS with subtree
rewrite rules only. With the same initial tree and the same subtree rewrite rules,
omitting the ranks of the symbols does not provide more substitution possibilities.
Since the classes of transition graphs GTRG and PSRG are equivalent, one obtains
the following.

Proposition 4.3. The class PSRG of transition graphs of PSRSs is strictly included in the
class SFPRG of transition graphs of SFPRSs: PSRG $ SFPRG.



8

Thus the undecidability results for PSRSs carry over to SFPRSs. These include the
reachability problems: constrained reachability, universal reachability, and universal
recurrence (cf. [17]).

Additionally, since this is the case for ground tree rewriting systems, the mo-
nadic second-order logic of SFPRSs is undecidable. This can also be observed di-
rectly from the transition graph of R0, since it includes the two-dimensional grid,
whose monadic second-order logic is undecidable (as proven e.g. in [19]).

4.2 Reachability with Saturation

The main contribution of this paper is the decidability of the reachability problem
for transition graphs of SFPRSs. This is done by an adaption of the well-known
saturation algorithm which e.g. solves the reachability problem for semi-monadic
linear rewriting systems over ranked trees (cf. [8]) by calculating the set pre∗R(T) =
{t ∈ TΣ | ∃t′ ∈ T : t →∗

R t′} of trees from which the set T can be reached. Thereby,
the rewrite rules of a SFPRS are simulated by adding transitions to an ε-N�TA that
recognizes the union of the target set T and all trees that correspond to a left hand
side of the rewrite rules similar to the construction in [17]. In the very same manner,
the set post∗R(T) = {t ∈ TΣ | ∃t′ ∈ T : t′ →∗

R t} of trees which are reachable from
the set T can be obtained by pursuing the same strategy for the reversed rewriting
system, i.e. the left and right hand sides of the rules are simply swapped.

However, due to the different natures of the two types of rules of SFPRSs, and
the employment of word automata in ε-N�TAs over unranked trees, the saturation
is based on an interleaving of two saturation algorithms on different levels of au-
tomata. In detail, for a prefix rewrite rule the saturation is basically realized by
adding ε-transitions on the level of word automata that recognize the sequence of
labels of the successors of a node, while for subtree rewrite rules, the saturation is re-
alized by adding ε-transitions on the level of tree automata. The crucial interleaving
aspects include that by the application of subtree rewrite rules new flat fronts may
be introduced, which also need to be saturable.

As the technical presentation of the algorithm and the formal correctness proof
are rather cumbersome, we prefer to give an informal description of how the algo-
rithm works. As mentioned above, it is a combination of the saturation algorithms
for ground rewrite systems on trees and for prefix rewrite systems on words. We
first briefly describe these two parts and then explain how the interleaving is imple-
mented to ensure that the prefix rewriting can only be applied to flat fronts.

Assume that we are given an N�TA A accepting the target set. For the simula-
tion of a subtree rewrite rule t ↪→ t′ we consider a state q that can be reached by A
on reading the right hand side t′ of the rule, i.e. with A : t′ →∗ q. We introduce
an ε-transition from qt to q, where qt is a special state that is (at the beginning) only
reachable via t. These states are added to A for all left hand sides of the subtree
rewrite rules before the saturation starts. Now assume A accepts a tree with t′ as
subtree, using q at the root of t′ in the accepting run. After the saturation step de-
scribed above, A can accept the same tree with t′ replaced by t by first moving to qt

on reading the subtree t, then using the new ε-transition, and continuing as in the
run on the original tree.

For the prefix rewrite rules we proceed similarly but now saturating the word
automata that recognize the sequence of labels of the successors of a node, called
horizontal automata in the following. Before the saturation, special states qa for each
letter a ∈ Σ are added to the tree automaton that can only be reached via reading
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Figure 4 Derivation to the target set e(a(c)d) and accepting run.

e

d d

e

b d

e

a d

c
qc

q1 qd

q2

p0 p1 p2

−→ −→

an a at a leaf. In the horizontal automata we introduce for each u on the left hand
side of a prefix rewrite rule a new state pu that can be reached only on reading the
sequence qa1

· · · qan , where u = a1 · · · an. In the following we denote this sequence of
states by q

u
.

Consider a prefix rewrite rule u ↪→ u′ and assume that in some horizontal au-
tomaton a state p can be reached on reading q

u′ , i.e. the state sequence corresponding

to the right hand side of the rule. Then we add an ε-transition from pu to p in this
automaton. Assume that A accepts a tree with a flat front having u′ as prefix. Then
an accepting run labels the corresponding sequence of leafs by q

u′ and the horizontal

automaton reaches a state p on reading q
u′ . Using the new ε-transition it is now also

possible to accept the tree where the prefix u′ is replaced by u at the flat front. Hence
we have simulated one step of prefix rewriting.

However, the previous description is not accurate due to the following. Assume
that the sequence of successors of some node starts with some leaves forming the
word u′ but that it is not a flat front, i.e. there are also some successors that are not
leaves. The saturation described above does not distinguish these cases and hence
the saturation also simulates prefix rewritings that are not applied to a flat front.
We have to make sure that after using an ε-transition from the saturation on the
horizontal level, the run can only continue using states of the form qa, indicating
that the automaton is really processing a flat front.

For this purpose, we introduce for each horizontal automaton a second copy in
which we erase all transitions that are labeled with states not of the form qa (the
resulting automaton has two initial states, one for each copy). We refer to this copy
as the flat copy of the automaton because it can only process states that are assumed
at a flat front.

We restrict the saturation process to the flat copy of the automaton. But now we
are facing a new problem: The (backward) application of the subtree rewrite rules as
simulated by the saturation on the level of the tree automaton might introduce new
flat fronts. This has to be reflected in the flat copies of the horizontal automata. We
illustrate this with the following small example.

Consider the subtree rewrite rule b ↪→ a(c) and the prefix rewrite rule d ↪→ b, and
assume that the tree e(a(c)d) is in the target set. Figure 4 shows a derivation with the
application of the two rules and the relevant parts of the accepting run of A on the
tree in the goal set.

Figure 5(a) shows (the relevant part of) the horizontal automaton whose run is
indicated in Figure 4. The saturation for the subtree rewrite rule gives an ε-transition
from qb (the state for the left hand side of the rule) to q1 (the state that is reached via
the right hand side of the rule). After this saturation the automaton also accepts the
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Figure 5 Horizontal automaton used in Figure 4.
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(a) Before the saturation step.
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p1
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qd

pd

qd
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ε

(b) Flat copy with the two inserted edges.

tree e(bd). But in the flat copy of the horizontal automaton there is no state that can
be reached via qb, which is the state sequence (of length 1) corresponding to the right
hand side of the prefix rewrite rule. The algorithm now reflects the fact that q1 can be
replaced by qb everywhere because there is an ε-transition from qb to q1 by copying

the transition p0
q1
−→ p1 from the non-flat copy to the flat copy of the horizontal as a

transition p0
qb
−→ p1.

Now the saturation is possible in the flat copy, and an ε-transition from pd is
added to p1 as depicted in Figure 5(b). After this step also the rightmost tree in
Figure 4 is accepted.

This completes the description of the algorithm. The main steps are summarized
as follows.

� On the level of the tree automaton we apply the usual saturation.

� For each horizontal automaton we introduce a “flat copy” that can only read the
states of the form qa assumed at the flat front of a tree.

� The saturation of the horizontal level is applied to the flat copies only.

� For each ε-transition of the form (qa, q) we transfer all q-transitions from the non-
flat copy as qa-transitions to the flat copy.

For an elaborate example, the full construction (also for regular SFPRSs), and the cor-
rectness proof, we refer the reader to [20]. The automaton resulting from the satura-
tion accepts exactly those trees from which the target set is reachable. As emptiness
for unranked tree automata is decidable, we obtain the following theorem.

Theorem 4.4. For every SFPRS R over unranked trees, the reachability problem: “Given
R, vertex t, and regular set T of vertices, is there a path from t to a vertex in T?” is decidable.

Similar to the case of PSRSs, it is shown in [20] via a reduction to the halting
problem of Turing machines that the decidability of the reachability problem fails
when restricting the transition graphs of (regular) SFPRSs to the tree language of a
deterministic top down tree automaton (cf. Section 3).
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5 Summary and Outlook

We showed that using rewriting systems over unranked trees one can generate a
class of infinite graphs that coincides with the class of transition graphs of ground
tree rewriting systems over ranked trees. The rewriting principle of these PSRSs
consists of substituting unranked trees partially, which corresponds to ground tree
rewriting over an encoding of unranked trees as ranked ones. Due to the class equiv-
alence, several decidability results over the transition graphs of GTRSs over ranked
trees can be transferred to those of PSRSs; nevertheless the encoding fails to capture
the complete structural information and thus leads to different decidability results
when taking the inner structure of the vertices into account.

Furthermore, (regular) SFPRSs over unranked trees were introduced, which add
flat prefix rewriting to the known paradigm of subtree substitution. The class of tran-
sition graphs of SFPRSs was shown to strictly include the class of transition graphs
of PSRSs, which allows to transfer several undecidability results. Additionally, we
described a saturation algorithm which yields the decidability of the reachability
problem over SFPRG. Similar to PSRSs, the decidability of the reachability problem
fails when taking the inner structure of the vertices into account.

As a class strictly subsuming the transition graphs of ground rewriting systems
over ranked trees, the class of (regular) SFPRSs deserves further study. Recently
we have shown that the first-order theory with reachability relation is decidable for
these graphs by proving that a transition graph enriched with reachability edges
is tree-automatic for a suitable definition over unranked trees, thus exploiting the
feature that any (tree-) automatic structure has a decidable first-order theory (cf. [1]).
Nevertheless, the decidability of other reachability problems, such as the recurrence
problem, is unsettled.

In general, other rewriting principles over unranked trees have yet to be inves-
tigated. One aspect could be to use other word rewriting techniques than prefix
rewriting in combination with subtree substitution. Another interesting point of ap-
plication is to define and investigate an adaption of (semi) monadic rewriting sys-
tems to unranked trees, which were introduced for ranked trees in [13].
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