
A Game Theoretic Approach to the Analysis
of Dynamic Networks 1

Frank G. Radmacher and Wolfgang Thomas
RWTH Aachen, Lehrstuhl für Informatik 7, 52056 Aachen, Germany

{radmacher,thomas}@automata.rwth-aachen.de

Abstract

A model of dynamic networks is introduced which incorporates three kinds of network changes: deletion
of nodes (by faults or sabotage), restoration of nodes (by actions of “repair”), and creation of nodes (by
actions that extend the network). The antagonism between the operations of deletion and restoration resp.
creation is modelled by a game between the two agents “Destructor” and “Constructor”. In this framework
of dynamic model-checking, we consider as specifications (“winning conditions” for Constructor) elementary
requirements on connectivity of those networks which are reachable from some initial given network. We
show some basic results on the (un-) decidability and hardness of dynamic model-checking problems.

Keywords: adaptive systems, dynamic networks, dynamic graph problems, model-checking, game theory.

1 Introduction and Motivation
The classical methodology of model-checking (see [6]) refers to a fixed system and a
specification of its behavior. Usually the states and transitions of the system under
consideration are collected in a transition graph (Kripke structure), and the only
dynamic aspect is the change of state (via available transitions) which is then cap-
tured by the concept of an execution path or (if branching behavior is considered) of
a computation tree. Specifications are definitions of desired properties of execution
paths or computation trees.

A theory of model-checking over dynamic structures is still very much in its be-
ginnings. Some references known to us are [15,3,13] where the data structures with
a dynamic behavior (like programs or UML state machines) are efficiently encoded
(e. g. as lists or trees) for the use of well-established model-checking methods. The
objective of this paper is to introduce (and prove initial results on) a simple but quite
general model for studying networks which change over time. We consider graphs as
models of communication networks. Such a network is assumed to change over time

1 Research was supported by the RWTH Aachen Research Cluster UMIC (Ultra High Speed Mobile Infor-
mation and Communication) of the German Excellence Initiative.

u v u v

Figure 1. Movement of strong node with restoration.

by the deletion and creation of nodes. The different networks arising in this way
from an original network G can be collected in a Kripke structure whose elements
are networks reachable from G by successive operations of network modification.
So we deal with a hierarchical model in which the first layer captures networks and
the second (represented by the Kripke structure) the dynamics of networks. Instead
of execution paths we consider “network evolvement paths”, and specifications typ-
ically are addressing properties of networks that should hold throughout (safety
properties) or properties that should be achieved (reachability conditions). More
complicated specifications are possible (e.g., referring to standard temporal logics
like LTL) but are not pursued in the present paper.

Two levels of the dynamics have to be distinguished: The first is concerned only
with information flow through a network, or a change of states of the nodes of
the network. Nodes and edges as such stay fixed. A natural way to describe this
aspect is to assume a labeling of the nodes that may change over time. The classical
model-checking problem can be seen as a special case of this dynamic labeling: We
consider the Kripke structure as a network and indicate the current state of the
Kripke structure by a special label at the corresponding node, or – in other words –
as a token on this node. A step consists of a shift of the token to a neighbor node
reachable via a transition; this obviously is a special case of re-labeling. In the
general case we have labels and change labels simultaneously in several nodes of the
network under consideration. We shall capture this idea of “information flow” by
re-labeling rules.

The second aspect of the dynamics involves a change in the set of nodes and/or
the set of edges. In the present paper we only consider changes in the set of nodes
(and induced changes in the set of edges). The more general case that arises when
including edges in the dynamics involves heavier notation but does not affect the
general results as they appear in this paper. We distinguish three types of changes,
with an “original” network G as a reference. We may delete nodes, we may restore
nodes that had been in existence before, or we may create completely new nodes.
All these steps involve the concept of “strongness” of a node: A strong node cannot
be deleted, and it is the prerequisite for performing the restoration and creation of
nodes. In the context of communication networks, one can view the strong nodes
as stations where maintenance resources are located. These resources may travel
through edges to existing nodes, and they may at some node u restore a deleted
node v by moving to it if there was an edge (u, v) in the network before the deletion
of v (see Fig. 1).

For the creation of a node we can pick some set S of strong nodes, create a new
node v (that is or is not strong) and connect it with each of the nodes in S by a
transition (see Fig. 2). This corresponds to the assumption that creation is “more
expensive” than restoration.

Both kinds of rules can be applied either generally or subject to constraints
which refer to the current labeling of nodes.

2

u1 u2 u3 u1 u2 u3

v

Figure 2. Creation of a new node by a set U = {u1, u2, u3} of strong nodes.

We model the natural antagonism between the deletion and restoration resp.
creation of nodes by a two-player game between the two agents “Destructor” (per-
forming deletion actions anywhere in the network) and “Constructor” (performing
the actions of restoration and creation). Note that the actions of Destructor oc-
cur globally in the network, whereas the actions of Constructor occur locally (they
are based on shifting strongness of nodes to neighbors). This asymmetry between
deletion and restoration or creation seems adequate for modelling phenomena of
fault-tolerance: Faults may happen anywhere, but actions of repair need coordi-
nation of resources. For simplicity, we shall consider here only turn-based games
where Destructor and Constructor act in alternation (but both have the option to
skip). Another simplification is the assumption that Constructor’s (and Destruc-
tor’s) moves are decided taking into account full information about the current
network. (This simplifying assumption is to be dropped in future work, using the
mechanism of information flow.) The task of Constructor is to enforce that proper-
ties given in a specification will be reached (or preserved) against any sequence of
moves by Destructor.

Specifications for dynamic networks are typically concerned with guaranteeing
desirable properties of networks. In the present paper we only consider the proper-
ties of connectivity and biconnectivity. (A graph is biconnected if deletion of any
node still leads to a connected graph.) There are many similar properties, like k-
connectivity, having a small diameter, having a certain minimal degree for all nodes,
etc.

The dynamic model-checking problem now takes the form of a problem of game
solution, where a network G and a set R of rules for its modification are given. We
associate deletion steps with Destructor and all other moves with Constructor.

For example we can ask for a solution of a safety game, given G and R:

Starting from G, does Constructor have a winning strategy to guarantee that the
network always stays connected?

A reachability game is given by the following problem:

Starting from G which is connected, does Constructor have a winning strategy
that will lead to a biconnected graph?

These are first examples of a much wider class of problems that are studied in
the algorithmic theory of infinite games (see [9]). The perspective of our work is to
link this theory to the analysis of dynamic networks.

The paper is structured as follows. In the next section we briefly discuss related
work. Then we present our model in formal detail. After that we list some natural
network properties that are relevant in the present context and show some initial
results on the solution of dynamic model-checking problems. Not surprisingly, it

3

turns out that in the general framework the reachability problem is undecidable. In
the restricted case of “non-expansive” dynamic networks we obtain decidability but
establish some hardness results. In the concluding section we address perspectives
of the game theoretic analysis of dynamic networks which are treated in ongoing
work.

2 Related Work

The game theoretic framework developed here is an extension of the theory of
“sabotage games” suggested by van Benthem (cf. [22]) and developed by Ph. Rohde
and C. Löding at RWTH Aachen; see [17,18,16,19,20]. The networks in these papers
are directed graphs with possibly multiple edges between nodes, on which a player
“Runner” wants to reach a node v from a given start node u. After each move
of Runner, the adversary, called “Blocker”, may delete an edge; and in this way
Runner and Blocker move in alternation. The algorithmic problem of solving this
game asks for a winning strategy for Runner that enables him to reach node v

against any choice of Blocker in deleting edges. Note that this game involves only
re-labelings (shift of position of Runner) and (edge-) deletions. As in the general
game above, the moves of the “good” player are local (i. e., transitions through
available edges), whereas the “bad” player (the Blocker) can act globally and access
any existing edge in any move.

Another interesting approach arises from the studies of dynamic versions of the
Dynamic Logic of Permission (DLP) which is in turn an extension of the Proposi-
tional Dynamic Logic (PDL). In DLP, “computations” in a Kripke structure from
one state to another are considered which are subject to “permissions”. The logic
DLP+

dyn (see [5,8]) extends DLP with formulas which allow updates of the permission
set and thus can be seen as a dynamically changing Kripke structure. Nevertheless,
all the dynamics have to be specified in the formula; an adversarial player is not
considered.

Previous studies of dynamic networks addressing the aspect of adversarial agents
have been concerned with routing problems. In such studies it was either assumed
that the network under consideration stays connected or the connectivity of the
network is at least given infinitely often over time (cf. [6,1,2]).

The idea of changing networks is of course studied in considerable depth in the
theory of graph grammars, graph rewriting, and graph transformations (see [4,21]).
While there the class of generable graphs (networks) is the focus of study, we deal
here with a more refined view when considering “evolvement paths” and the proper-
ties of graphs occurring in them. In the “one-player” framework of model-checking,
we mention the work [7] where graph-interpreted temporal logic is introduced as
a rule-based specification. It extends LTL by interpreting formulas on transition
systems which nodes are graphs. A technique is developed to map the “graph tran-
sition systems” to finite Kripke structures, so that classical LTL-model-checking can
be applied.

In finite model theory, S. Patnaik, N. Immerman, and W. Hesse developed a
theory of “dynamic complexity” (cf. [11,10]). For example, the decision problem
DynREACH is the question whether, given two vertices u and v and a sequence of

4

edge insertions and deletions (as well as changes of u and v), there is a path from
u to v. This problem corresponds to the restriction of our framework to one-player
games, where Constructor can add and delete edges from networks. For this problem
there are motivations in data base theory, but the asymmetry between Destructor
and Constructor (as in settings where fault tolerance is the guiding motivation) is
missing.

In the theory of fully dynamic algorithms, dynamic graphs in which vertices and
edges are inserted or deleted are considered, but the focus of investigation is the
computational complexity of static graph properties with respect to a given update
step resp. a given sequence of update steps (cf. [14,12]).

3 Dynamic Networks via Games

3.1 The Basic Model

We present networks in the form G = (V,E, A, S, (Pa)a∈Σ) with
• a finite set V of vertices (also called nodes),
• an undirected edge relation E,
• a set A ⊆ V of “active nodes”,
• a set S ⊆ A of “strong nodes”,
• a partition of V into sets Pa for some label alphabet Σ (A node belongs to Pa if

it carries label a. For technical simplicity we include a blank symbol xy in Σ (as
a default for “unlabeled” nodes).

The dynamics of a network arises from an initial network G by the possible
moves from Destructor and Constructor (Constructor’s moves are subject of a set
of rules) which are changing the respective current network. A game arena will be
presented as a pair G = (G, R), with an initial network G as above and a finite set
R of rules for Constructor. (In this work we will always have A = V for the initial
graph G; no nodes are deleted at the beginning of the play.)

The two players Destructor and Constructor play turn by turn (Destructor
starts). In our model the players are allowed to skip as well. Plays are infinite in
general, but may be considered finite in the cases where neither of the players can
move, or a given winning condition is satisfied.

Let us describe the rules that define the moves. When it is Destructor’s turn, he
can do a deletion step by deleting some node v ∈ (A \ S); A is changed to A \ {v}.

When it is Constructor’s turn, she can make in accordance with his rule set R

a move of one of the following types:

Labeling rule: 〈 a, b −→ c, d 〉 means to change the labels a and b of two edge-
connected nodes of A into c and d, respectively. In the case of “pure information
flow” we have b, c = xy and a = d. Formally, for a pair (u, v) ∈ E with u ∈ Pa

and v ∈ Pb the sets Pa, Pb, Pc, and Pd are updated to Pa \{u}, Pb \{v}, Pc∪{u},
and Pd ∪ {v}.

For labeling rules we will also consider rules with multiple re-labelings in one
turn. This corresponds to our intuition that there can be a lot of information

5

flow in the network at the same time. For example for two labeling rules in one
turn we use the notation 〈 a, b −→ c, d ; e, f −→ g, h 〉. The rules are applied one
after the other but in the same turn.

Move of strong node resp. restoration of node: For an arbitrary u ∈ S with
an edge (u, v) ∈ E and a node v 6∈ S, update S to (S\{u})∪{v} and A to A∪{v}.
In case v ∈ A this means to simply shift strongness to v; in case v ∈ V \ A this
means restoration of v. The ability of a strong node to move may be subject to
a certain labeling (a, b) of the pair (u, v). We use the Notation 〈 a move−−−→ b 〉.

Creation of node: Take any set U ⊆ S of strong nodes, create a new node w and
connect it to the nodes of U . Formally, the sets V and A are updated to V ∪{w},
resp. A ∪ {w}, and also E is updated by adding edges between w and each node
of U . The creation may be subject to the node labels a1, . . . , an (n = |U |) of
the nodes in U . Also the labels of the nodes in U may change after creation (to
a′1, . . . , a

′
n). We use the notation 〈 a1, . . . , an

create(c)−−−−−→ a′1, . . . , a
′
n 〉, when the new

node w is labeled with c. By simply writing 〈 a1, . . . , an
create−−−→ a′1, . . . , a

′
n 〉 we

assume w gets the label xy. For the creation of a strong node we use the notation
〈 a1, . . . , an

s-create(c)−−−−−−→ a′1, . . . , a
′
n 〉. In this case also S is updated to S∪{w}. Note

that these moves are the only ones that change V and E. The new node w is
created only once; it can henceforth only be deleted and restored.

For a game arena as given here and a network property P , we distinguish two
types of games referring to P :
• Safety Game with respect to P : Does Constructor have a winning strategy to

preserve, starting from G and proceeding by the rules of R, the property P for
all networks reached in a play?

• Reachability Game with respect to P : Does Constructor have a winning strategy
to guarantee, starting from G and proceeding by the rules of R, that some network
with property P is reached?

The Dynamic Model-Checking Problem (in the safety, respectively reachability
format) consists of the question, given G and R and network property P , whether
Constructor has a winning strategy in the safety game, respectively reachability
game for P .

More generally, one can introduce, referring to network properties P1, . . . Pn,
the temporal logic LTL over P1, . . . , Pn and ask for winning strategies that guar-
antee satisfaction of an LTL-formula for an infinite play between Destructor and
Constructor.

Example 3.1 Consider the game arena G = (G, R) with labels ⊥, xy in Σ. The
initial game graph G = (V,E, A, S, (Pa)a∈Σ) with the set S = {s1, s2, u1, w1} of
strong nodes is depicted in Fig. 3.

Consider as rules R only moves of strong nodes (if applicable with restoration)
labeled with a blank: 〈 xy move−−−→ xy 〉. The strong nodes s1 and s2 are not able to
move, because their label does not match the move rule. As a scenario for this game
arena we could imagine two clients s1, s2 which communicate over a network with
unreliable intermediate nodes but two mobile maintenance ressources.

6

xy

u1

xy

u2

xy

u3

xy

v1

xy

v2

xy

w1

xy

w2

xy

w3

⊥

s1

⊥

s2

Figure 3. An example initial game graph (bold nodes are strong).

We consider a safety game with connectivity of s1 and s2 as property P . So, we
are interested in the question whether Constructor can always guarantee that there
is a path from s1 to s2 in the network. If we take a closer look at this example we see
that Destructor has a winning strategy. He can delete w3 in his first move. Then we
distinguish between two cases: If Constructor restores w3 then Destructor deletes
v1 in his next move and finally u1 or v2. If Constructor does not move the upper
movable strong node to w3 this node has to remain at w1, otherwise Constructor
loses by deletion of w1. In this case it is easy to see that Destructor wins by a
suitable deletion of nodes in {u1, u2, v1, v2}.

Now we consider the same game, but additionally with the rule 〈 xy, xy
create−−−→

xy, xy 〉. We claim that now Constructor has a winning strategy. If Destructor deletes
the vertex v1 or v2 Constructor creates a new vertex v3 with the creation rule which
establishes a new connection between the two strong nodes u1 and w1. If Destructor
deletes the new vertex v3 Constructor creates a new vertex again, and so on. Note
that in this way the set V of vertices of the graph can increase to an unbounded
number.

Even in these very small examples the exact formalization of the winning strate-
gies is quite complex. So, this example should already suffice as a motivation for
formal model-checking methods.

3.2 Remarks on Special Cases and Variants

The model introduced above is quite general, and many special cases and variants
can be studied. We only mention three of them.

(i) Classical Model-Checking: As mentioned in the Introduction, the classical
model-checking problem for LTL can be captured as a special case of the dy-
namic model-checking problem (in the framework of LTL). In this case, the
graph is directed and the properties P1, . . . , Pn refer to pointed graphs (G, v)
(so Pi may be considered as a vertex rather than a graph). Destructor stays
silent – so we have a solitaire game –, and Constructor realizes the change of
the “current state” by shifting a token through the given graph (using only
re-labeling rules).

(ii) Solitaire Games: In this case, only Constructor moves and keeps control of
the evolvement of networks. Deletion and hence restoration moves are not
admitted, and the moves that remain are either the creation or the re-labeling
of nodes. A variant suggested by the solitaire model is the situation where

7

Constructor also carries out the deletion moves. This corresponds to a situation
where the evolvement of a structure (here: a network) is controlled completely
by one agent.

(iii) Non-expansive Games: For proper games between Destructor and Constructor,
we can consider the special case that Constructor does not use creation moves.
Then we call the rules non-expanding. This situation corresponds to a network
evolvement where the original set V of nodes is never extended. Obviously,
the set of networks reachable from a given initial graph – i. e., the Kripke
structure built from G – is finite in this case. As a consequence, the “non-
expanding dynamic model-checking problem” (in the safety-, reachability-, or
even LTL-format) is decidable. Below we show that dropping the condition of
non-expansion causes undecidability.

There are many more variants that might have good motivations from different
applications. A natural variant is to consider deletion and insertion of edges rather
than nodes (or even of both, nodes and edges). This would require corresponding
conventions regarding the rules and their reference to labels. Note that the sabotage
games were based on the idea of edge deletion. For the general results shown in this
paper, this aspect is not essential; so we do not pursue it. However, it will play a
major role for refined studies, e. g. concerning information flow.

A possible criticism about our framework may be the radical difference between
Destructor and Constructor, which puts the former into an advantage. This can be
remedied by natural conventions, for example by the assumption that Destructor
keeps silent (i. e., skips) for certain periods of time until a deletion is carried out. It
depends on the respective area of application how a balance between Constructor
and Destructor should be tuned. In the context of fault tolerance (which is the
motivation of our work), it is natural to assume that that the deletion actions of
Destructor are undesirable and the creation and restortation actions of Construc-
tor are desirable. In other domains, the converse is conceivable. The purpose of
the present paper is to exhibit a framework where such modification are easy to
incorporate.

4 Basic Results on Dynamic Model-Checking

Let us list some basic network properties that arise naturally in our framework.
We refer to the restriction of networks in the simple format G = (V,E) of plain

undirected graphs. As a preliminary remark we mention that in most practical
applications the degree of networks should be bounded by a constant d (meaning
that each node is connected to at most d neighbors).

A graph G = (V,E) is connected if for each u, v ∈ V there is a path from
u to v. It is biconnected (resp. k-connected for k > 2) if for each node v (resp.
for each k − 1-tuple (v1, . . . , vk−1) of nodes) the induced graph over V \ {v} (resp.
V \ {v1, . . . , vk−1}) is connected. A graph G = (V,E) is of diameter d if for each
pair u, v ∈ V there is a path from u to v of length ≤ d.

In our first result we show that the dynamic model-checking problem even in the
solitaire version (where Destructor always decides to skip) with respect to connec-

8

tivity properties is undecidable. The essential feature of the undecidability proof is
the availability of creation moves.

Theorem 4.1 The dynamic model-checking for solitaire games in reachability for-
mat is undecidable in the following version: Given a connected network G and a
finite set R of rules for Constructor, is there a strategy for Constructor to reach a
biconnected network?

Proof We use a reduction to the halting problem for Turing machines. We present
Turing machines in the format

M = (Q,Γ, δ, q0, qstop)

with a state set Q, tape alphabet Γ (we assume Q ∩ Γ = ∅), transition function
δ : Q \ {qstop} × Γ → Q× Γ× {L,R}, initial state q0, and stop state qstop.

For each such Turing machine M we construct a solitaire game (i. e. an initial
connected network G and a set R of rules) such that M halts when started on the
empty tape iff Constructor can reach a biconnected network from G by applying
the rules of R.

The idea of the construction is to represent a Turing machine configuration
[a1 . . . anqb1 . . . bm] (here, [and] are left and right marker, respectively) by a se-
quence of n + m + 3 nodes labeled with these symbols in succession. The label
alphabet thus contains the tape alphabet of M , the states of M , and the end mark-
ers. For later use we allow also the letters [s,]s, p+ for each state p ∈ Q, and as for
each letter a of the tape alphabet.

As initial graph we take the three node graph with nodes labeled [, q0,]. We
define these three nodes as strong.

It is easy to supply a set of re-labeling rules which allow to change this line
graph only in a way that the computation of M starting with the empty tape is
simulated. Formally, for each pair (q, a, p, b,X) with δ(q, a) = (p, b,X) we add the
game rules 〈 q, a −→ p+, b 〉 and 〈 y, p+ −→ p, y 〉 if X = L, and 〈 q, a −→ b, p 〉 if
X = R (here, y denotes an arbitrary label of Γ ∪ {xy}).

For the case that more space is needed (beyond the current end markers), we
introduce creation steps subject to labelings, making the endmarker nodes strong
again: 〈 [s-create([)−−−−−−→ xy 〉 and 〈] s-create(])−−−−−−→ xy 〉.

Finally, we allow special re-labeling rules that can be applied when the final state
qstop is reached. The extra index “s” is now propagated through the existing line
graph to the right and to the left, using the extra letters mentioned above. Given
two strong nodes with labels [s,]s, we allow to create a new node w connected with
both of them, thus generating a circle graph (which of course is biconnected). 2

The result also holds for the two-player game. Since in our simulation we have
defined all nodes as strong, the presence of a destructive player does not change the
plays of the game.

Note that the proof relies on the availability of creation moves; if these are
cancelled, the problem becomes trivially decidable:

9

Remark 4.2 The dynamic model-checking problem in the reachability and the
safety version is decidable for non-expanding networks.

For the proof it suffices to observe that from the initial network only finitely many
distinct networks (over the unchanged original vertex set V) can be generated. If
there are N such networks, each play will yield a repetition after at most N steps.
Hence, for deciding the winner (and providing a winning strategy) it suffices to
build up the game tree up to depth N .

Remark 4.3 In order to keep the model simple we do not consider scenarios where
deletion and insertion of edges are allowed. Since the number of possible edges in the
non-expansive case is bounded by

(|V |
2

)
, the absence of edge insertion and deletion

is insignificant for the decidability of the model-checking problem.

In the following we will show that solvability of non-expansive games (i. e., with-
out creation rules) is PSPACE-hard. We use a reduction to the solution of sabotage
games as mentioned in the introduction. Löding and Rohde showed that the sabo-
tage game problem is complete for the PSPACE [17,18,20]. Let us recall the precise
formulation.

A sabotage game Gs = (Gs, vin) is played on a game graph Gs = (V,E) which
changes over time; also a designated set F ⊆ V is given. The two players, called
Runner and Blocker, play as follows: Runner starts the play in a vertex vin and
moves to a node v′ with (vin, v′) ∈ E. Then player Blocker erases an edge (w,w′) ∈ E

resulting in a graph G′. Runner continues the play on G′, and so on in alternation.
Runner wins iff she can can reach a vertex in the given set F ⊆ V of final vertices.

Löding and Rohde introduced sabotage games with multi-graphs (with possibly
multiple edges), but showed that single-graphs suffice (see Lemma 1 in [18]).

Theorem 4.4 In the non-expansive case, the dynamic model-checking problem in
the reachability version is PSPACE-hard.

Proof Consider a sabotage game Gs = (Gs, vin) on the initial game graph Gs =
(Vs, Es) and a set F ⊆ Vs of final vertices. We construct a game arena G = (G, R)
with node labels ‘vertex’, ‘edge’, ‘run’, ‘acc’, ‘reach’ in the alphabet Σ with the
purpose that Constructor can reach a network in G containing a label ‘reach’ iff
Runner wins the sabotage game Gs.

The idea is to simulate the Runner by labeling rules of the form 〈 run, ∗ −→
∗, run 〉. We simulate edge removal by node removal as follows: We make the vertices
of the original initial graph Gs unerasable by making them to unmovable strong
nodes. Then we add one vertex for each edge in ES . Instead of deleting edges
Destructor may delete these new vertices. In order to allow Constructor to “move”
the run label from one unerasable vertex to another, she make two re-labeling steps
in one turn.

Figure 4 shows the initial graph Gs of an example sabotage game and the equiv-
alent initial game graph G of our game.

The initial game graph is G = (V,E, A, S, (Pa)a∈Σ) with V := Vs ∪ Es, and
E arises from Es as in the figure. Additionally let Pvertex := Vs \ ({vin} ∪ F),
Pedge := Es, Prun := {vin}, Pacc := F , Preach := ∅, and S := Vs.

10

run edge vertex

edge

edge

acc

acc

Figure 4. Initial graph Gs of a sabotage game and corresponding initial graph G of the reachability game.

In order to simulate the movement of Runner the set R contains the rules
〈 run, edge −→ vertex, run ; run, vertex −→ edge, run 〉 and 〈 run, edge −→ vertex,

run ; run, acc −→ edge, reach 〉. These rules allow Constructor to propagate the ‘run’
label from one ‘vertex’-labeled node to another by passing one non-deleted ‘edge’-
labeled node. If the ‘run’-label reaches the ‘acc’-label it is re-labeled to ‘reach’. Note
that there are no movement resp. restoration rules in R, so that all strong nodes
(not labeled with ‘edge’) are considered unerasable.

In this proof we assume Constructor starts the game (alike Runner starts the
sabotage game). (This could be easily achieved by connecting the ‘run’-node to one
‘acc’-node with an additional ‘edge’-labeled node. So, Destructor deletes this extra
‘edge’-labeled node in his first turn.)

The deletion of the nodes in Es resp. the propagation of the ‘run’-label from on
node in Vs to another corresponds to the edge-deletion resp. to the movement of
Runner in the sabotage game. Hence, Constructor can reach a network containing
a label ‘reach’ in G iff Runner wins the sabotage game Gs. 2

Note that we do not have any movement resp. restoration steps in the proof, so
the problem remains PSPACE-hard for restricting our games by prohibiting those
rules.

One might have the impression that the high complexity for the case without
node creation is only due to consideration of information flow resp. labeling rules.
But even without these rules, simple questions like connectivity cause computational
problems. We present a corresponding PSPACE-hardness result in Thm. 4.6 below
using a reduction to sabotage games again. For readers who prefer a reduction to a
standard problem, we include also a NP-hardness proof (invoking the vertex cover
problem).

Theorem 4.5 In the non-expansive case without consideration of information flow,
the dynamic model-checking problem with respect to connectivity in the safety version
is NP-hard.

Proof We reduce the vertex cover problem which is well-known to be NP-hard to
the question whether Constructor can guarantee connectivity of the network in the
safety game.

We state the vertex cover problem in the following form: Given a graph GVC =
(V ′, E′) and an integer k, is there a vertex cover of the size k or less for GVC?

We construct a game arena G = (G, R) with labels ‘vertex’, ‘edge’, ‘keeper’,

11

vertex

edge

vertex

edge

vertex

edge

vertex

edge

vertex

storage

s1

storage

s2

keeper

r

xy t1 xy t2

Figure 5. An ordinary graph GVC and corresponding initial graph G of the safety game for testing GVC
for a vertex cover of size 2.

‘storage’, xy in Σ. The idea is to adapt GVC for the initial graph of G by adding an
unmovable strong node for each edge. We keep the original nodes of GVC as erasable
nodes. These erasable vertices are connected with a “storage” of k movable strong
nodes s1, . . . , sk. The erasable vertices are also connected with an unmovable strong
node r which keeps the vertices connected. So, in a play Destructor can only try to
isolate the ‘edge’-labeled nodes by deleting the ‘vertex’-labeled nodes. Constructor
can only preserve connectivity of G by moving the k strong nodes of the storage to
the vertices which are a vertex cover for GVC.

Additionally, k nodes labeled with xy are connected with the ‘edge’-labeled nodes
to prevent Destructor from winning before Constructor can move the nodes of the
storage to the vertex cover. Destructor can delete these xy-nodes within k turns and
there is no way for Constructor to restore them.

For example in the graph in Fig. 5 (on the left) there exists a vertex cover of
size 2, so two strong storage nodes (and two additional nodes labeled with xy) are
necessary for Constructor to preserve the connectivity (in the right-hand graph).

Formally, the initial game graph is G = (V,E, A, (Pa)a∈Σ, S) with V := V ′ ∪
E′∪{r, s1, . . . , sk, t1, . . . , tk}, and E arises from E′ as in the figure. Additionally let
Pvertex := V ′ Pedge := E′, Pkeeper := {r}, Pstorage := {s1, . . . , sk}, Pxy := {t1, . . . , tk},
and S := E′ ∪ {r, s1, . . . , sk}.

In order to allow movement of the strong storage nodes to the nodes labeled
with ‘vertex’ we add a rule 〈 storage move−−−→ vertex 〉 to R. Note that this is the only
rule in R, so that the other strong nodes (not labeled with ‘storage’) are unmovable.

Clearly, if for GVC a vertex cover of size k exists, player Constructor wins by
moving k strong nodes to the vertex cover.

For the other direction notice that it is best for Constructor to move nodes to
the erasable nodes labeled with ‘vertex’. Since only the k strong storage nodes are
movable, Constructor can only keep the persistence of k nodes of VG of her choice.
If Constructor wins, these nodes are a vertex cover of size k for GVC. 2

As announced, we now sharpen this result to PSPACE-hardness, using a reduc-
tion to the solution of sabotage games (which is PSPACE-complete [17,18,20]). We
show that the problem is PSPACE-hard even in the case we omit the distinction of
node labels (i. e., all nodes are labeled with xy).

12

xy xy

xy

xy

K|Vs|

· · ·

· ·
·

xy

vtarget

··
·

Figure 6. Initial graph Gs of a sabotage game and corresponding initial graph G of the safety game with
respect to connectivity.

Theorem 4.6 In the non-expansive case without consideration of information flow
and without distinction of node labels, the dynamic model-checking problem with
respect to connectivity in the safety version is PSPACE-hard.

Proof Consider a sabotage game Gs = (Gs, vin) on the initial game graph Gs =
(Vs, Es) with a set F ⊆ Vs of final vertices. We construct a game arena G =
(G, R) where all vertices are labeled with xy, so that Constructor can preserve the
connectivity of the graph in G iff Runner wins the sabotage game Gs.

The idea is to simulate the movement of player Runner by the movement of a
strong node. Intuitively, Constructor should be able to move a strong node to a
“final” vertex in G iff Runner reaches this final vertex of F in the game Gs. Then,
Constructor can prevent Destructor from destroying the connectivity iff Constructor
can move a strong node to a “final” vertex. We will ensure the latter by connecting
the final vertices with a complete graph K|Vs| of |Vs| nodes. Each final vertex
is connected with all nodes of K|Vs|, and each node of K|Vs| is connected with an
additional node called vtarget. Destructor can isolate vtarget by deleting the complete
subgraph K|Vs| iff Constructor cannot move a strong node towards a “final” vertex
to K|Vs|. For the rest of the arena Constructor can always guarantee connectivity
in G, but with the handicap that a strong node can be moved to a final vertex iff
Runner wins in Gs.

In order to realize the construction, we shall replace the edges of Gs by so-called
gates which we depict by a bold square; an example for the simulation is depicted
in Fig. 6 which shows the initial graph Gs of an example sabotage game and the
equivalent initial game graph G of our game.

The replacement gate for an edge between two nodes u and v is depicted in Fig. 7.
All gates in the graph share the same vertices z1 and z2. Each node of the complete
subgraph K|Vs| described above is connected to z1 as well. Thus, all vertices other
than vtarget stay connected if Constructor always skips. The strong node z1 is
unmovable, otherwise Destructor isolates z2 by deletion of z1. The movement of
Runner from u to v is simulated by the situation that Constructor can move the
strong node at w to v without giving Destructor the opportunity to isolate one of
the nodes xi. Therefore Constructor needs a strong node at u which she can move
towards w in the case that Destructor deletes a yi. Conversely, if u is not strong and
Destructor deletes one of the nodes yi, Constructor cannot move the strong node at
w to v anymore (even in the case that u becomes strong later), because Destructor
could subsequently isolate xi by deletion of w. The xi-nodes and yi-nodes exist

13

u v

xy

u

xy

w

xy

v

xyx1 xyx2

xyy1 xyy2

xyz1

xyz2

Figure 7. An edge between nodes u and v in the sabotage game and its replacement gate.

twice to prevent Constructor of “securing” the gate by moving the strong node at w

to a xi node. (If Constructor moves the strongness of w to one xi-node, Destructor
can achieve the isolation of the other one.)

Formally, we construct the initial game graph G = (V,E, A, S, (Pxy)) with V :=
Vs ∪Es ∪ {w, x1, x2, y1, y2} ×Es ∪ {z1, z2} ∪ V (K|Vs|) ∪ {vtarget}, and E arises from
Es as in the figures. Additionally let Pxy := V , and S := {vin, z1} ∪ {w} × Es.
With V (K|Vs|) we denote the vertices of the complete subgraph K|Vs|, and vtarget is
the node which Destructor tries to isolate. The vertex vtarget is only connected to
the nodes in K|Vs|, and each node of K|Vs| is additionally connected to each “final”
vertex and to the vertex z1. The only rule in the set R is 〈 xy move−−−→ xy 〉 which allows
arbitrary movement of strongness (to weak nodes).

In this proof we assume Constructor starts the game (alike Runner starts the
sabotage game). (This could be easily achieved by connecting the strong node in
G which corresponds to the initial node in Gs with one of the “final” nodes by an
additional gate. So, Destructor deletes a yi-node of this gate in his first turn.)

Assume, Runner has a winning strategy in Gs. For each turn where Runner
moves from a node u to a node v in Gs, Constructor moves the strongness of w to v

in the corresponding replacement gate for the edge (u, v) in G. If Destructor deletes
one of the nodes y1, y2, or w in this gate later on, Constructor reacts by securing
this gate by moving the strongness of u to w (otherwise this move is not necessary).
Since Runner reaches a final state in Gs within |Vs|−1 turns, Constructor can move
the strongness to a associated node in G before Destructor can delete |Vs|−1 vertices
of K|Vs|. Constructor can finally move this strong node to a node of K|Vs|, hence
she wins in G.

Conversely, assume that Blocker has a winning strategy in Gs. For each deletion
of an edge (u, v) in Gs, Destructor deletes a yi-node of the associated gate. In the
case that Constructor moves the strongness of a w-node to a v-node without having
the required strongness at the associated u-node, Destructor reacts by deleting a
yi-node of this gate (and successively the w-node if Constructor does not move
back). Analogously, if Constructor moves strongness of a w-node to a xi-node
Destructor tries to isolate the other xi-node. And in the case that Constructor
moves the strongness of z1, Destructor wins by deleting z1. Since Runner loses the
sabotage game, Constructor cannot move a strong node towards a “final” node to the
complete subgraph K|Vs| without losing the game. After blocking the replacement

14

gates according to Blocker’s strategy in Gs, Destructor can delete all vertices of
K|Vs|. In this case vtarget becomes isolated and Destructor wins, too.

Hence, Constructor can preserve the connectivity in G iff Runner wins the sab-
otage game Gs. 2

In the present paper we do not settle the question, whether the considered non-
expansive cases of the model-checking problem are actually solvable in PSPACE.

5 Perspectives
We have presented in this paper a very flexible model of dynamic networks based
on the paradigm of a game between the two players Destructor and Constructor.
We showed some preliminary results on the status of the dynamic model-checking
problem associated with this game.

Our current work addresses various restrictions of the framework. It is obvious
that interesting algorithmic solutions can only be obtained in more constrained
scenarios.

However, this does not apply to the specifications. In practice it may be rele-
vant to guarantee a behavior of dynamical networks which transcends the range of
reachability or safety properties. Already the use of the “until” operator may be in-
teresting; it allows to express reachability properties under an additional constraint
(whether a certain property is reached and until then another constraint is met).

Another leading aspect is that yes/no questions as studied in this paper (i. e.,
whether a dynamic model-checking specification is satisfied or not) has to be refined.
From a practical point of view the formulation of optimization problems is more
useful. As an example consider a network in grid form, say a two-dimensional
n × n array of nodes. In the associated safety game without labeling constraints
the connectivity is to be preserved. The question is how many strong nodes are
required to ensure this. It is clear that Destructor wins if around some node v all
nodes of distance < 6 (including v itself) fail to be strong: In this case, Destructor
can successively delete the at most four neighbors of v and thus isolate v from
the rest of the network, destroying connectivity. To determine the precise minimal
number of strong nodes necessary to ensure connectivity is an optimization issue
extending the question whether a given network (with a given set of strong nodes)
allows to satisfy a safety specification.

References
[1] Awerbuch, B., P. Berenbrink, A. Brinkmann and C. Scheideler, Simple routing strategies for adversarial

systems, in: Proceedings of FOCS (2001), pp. 158–167.

[2] Awerbuch, B., A. Brinkmann and C. Scheideler, Anycasting in adversarial systems: Routing and
admission control, in: Proceedings of ICALP, Lecture Notes in Computer Science 2719 (2003), pp.
1153–1168.

[3] Bouajjani, A., P. Habermehl, A. Rogalewicz and T. Vojnar, Abstract regular tree model checking of
complex dynamic data structures, in: Proceedings of SAS, Lecture Notes in Computer Science 4134
(2006), pp. 52–70.

[4] Corradini, A., GETGRATS: A summary of scientific results (with annotated bibliography), Electronic
Notes in Theoretical Computer Science 51 (2001).

15

[5] Demri, S., A reduction from DLP to PDL, Journal of Logic and Computation 15 (2005), pp. 767–785.

[6] Edmund M. Clarke, J., O. Grumberg and D. A. Peled, “Model checking,” MIT Press, Cambridge, MA,
USA, 1999.

[7] Gadducci, F., R. Heckel and M. Koch, A fully abstract model for graph-interpreted temporal logic, in:
Proceedings of TAGT, Lecture Notes in Computer Science 1764 (1998), pp. 310–322.

[8] Göller, S., On the complexity of reasoning about dynamic policies, in: Proceedings of CSL, Lecture
Notes in Computer Science 4646 (2007), pp. 358–373.

[9] Grädel, E., W. Thomas and T. Wilke, “Automata, Logics, and Infinite Games,” Lecture Notes in
Computer Science 2500, Springer, 2002.

[10] Hesse, W., The dynamic complexity of transitive closure is in DynTC0, Theoretical Computer Science
3 (2003), pp. 473–485.

[11] Hesse, W. and N. Immerman, Complete problems for dynamic complexity classes, in: Proceedings of
LICS (2002), pp. 313–322.

[12] Holm, J., K. de Lichtenberg and M. Thorup, Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge, and biconnectivity, Journal of the ACM 48 (2001),
pp. 723–760.

[13] Jussila, T., J. Dubrovin, T. Junttila, T. Latvala and I. Porres, Model checking dynamic and hierarchical
UML state machines, in: Proceedings of MoDeV2a (2006), pp. 94–110, http://modeva.itee.uq.edu.au.

[14] King, V. and G. Sagert, A fully dynamic algorithm for maintaining the transitive closure, Journal of
Computer and System Sciences 65 (2002), pp. 150–167.

[15] Lerda, F. and W. Visser, Addressing dynamic issues of program model checking, in: Proceedings of
SPIN, Lecture Notes in Computer Science 2057 (2001), pp. 80–102.

[16] Löding, C. and P. Rohde, Model checking and satisfiability for sabotage modal logic, in: Proceedings of
FSTTCS, Lecture Notes in Computer Science 2914 (2003), pp. 302–313.

[17] Löding, C. and P. Rohde, Solving the sabotage game is PSPACE-hard, Technical Report AIB-05-2003,
RWTH Aachen (2003).

[18] Löding, C. and P. Rohde, Solving the sabotage game is PSPACE-hard, in: Proceedings of MFCS, Lecture
Notes in Computer Science 2747 (2003), pp. 531–540.

[19] Rohde, P., Moving in a crumbling network: The balanced case, in: Proceedings of CSL, Lecture Notes
in Computer Science 3210 (2004), pp. 310–324.

[20] Rohde, P., “On Games and Logics over Dynamically Changing Structures,” Ph.D. thesis, RWTH Aachen
(2005).

[21] Rozenberg, G., editor, “Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations,” World Scientific, 1997.

[22] van Benthem, J., An essay on sabotage and obstruction, in: D. Hutter and W. Stephan, editors,
Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of His
60th Birthday, Lecture Notes in Computer Science 2605 (2005), pp. 268–276.

16

http://modeva.itee.uq.edu.au

	Introduction and Motivation
	Related Work
	Dynamic Networks via Games
	The Basic Model
	Remarks on Special Cases and Variants

	Basic Results on Dynamic Model-Checking
	Perspectives
	References

