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Abstract. Infinite games are studied in a format where two players,
called Player 1 and Player 2, generate a play by building up an ω-word
as they choose letters in turn. A game is specified by the ω-language
which contains the plays won by Player 2. We analyze ω-languages
generated from certain classes K of regular languages of finite words
(called ∗-languages), using natural transformations of ∗-languages into
ω-languages. Winning strategies for infinite games can be represented
again in terms of ∗-languages. Continuing work of Rabinovich et al. and
of Selivanov (2007), we analyze how these “strategy ∗-languages” are
related to the original language class K. In contrast to that work, we
exhibit classes K where the strategy representations strictly exceed K.

1 Introduction

The theory of regular ω-languages is tied to the theory of regular languages of
finite words (regular ∗-languages) in at least two different ways. First, one obtains
all regular ω-languages as finite unions of sets U · V ω where U, V are regular
∗-languages. This representation is obtained via the model of nondeterministic
Büchi automata over infinite words. Second, if one works with deterministic
Muller automata, one obtains a representation of all regular ω-languages as
Boolean combinations of sets lim(U) with regular U (cf. [5, 15]), where

lim(U) = {α ∈ Σω | infinitely many finite α-prefixes are in U}.

In this paper we focus on the latter approach as we study the connection between
∗-languages and ω-languages in the context of infinite games. Another canonical
transformation of ∗-languages into ω-languages is to consider the extensions of
words of a ∗-language U :

ext(U) = {α ∈ Σω | some finite α-prefix is in U}.

Boolean combinations of such languages with regular U are recognized by deter-
ministic weak Muller automata (also known as Staiger-Wagner automata [11]).
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We write BC(lim(REG)), respectively BC(ext(REG)), for the Boolean combina-
tions of sets lim(U), respectively ext(U), with regular U . In each case we refer
to a fixed alphabet Σ so that complementation is done with respect to Σω. We
prefer the notation ext(U) over the other popular alternative, U · Σω, only for
the purpose of emphasizing analogies or differences to lim(U).

The purpose of this paper is to study the connection between ∗-languages and
ω-languages in two dimensions of refinement. First, the class REG is replaced
by small subclasses, such as the class of piecewise testable languages or levels
within the dot-depth hierarchy of star-free languages. In particular, for such a
class K of ∗-languages, we consider the classes BC(lim(K)) and BC(ext(K)),
defined as above for the case REG. Secondly, we study a natural approach for
the reverse direction, from ω-languages back to ∗-languages. Here the concept of
infinite games is used, in which ω-languages enter as “winning conditions”, and
∗-languages arise as representations of “winning strategies”. We shall study the
question whether games with a winning condition in classes such as BC(ext(K))
or BC(lim(K)) can be “solved” with winning strategies that are again repre-
sentable in K.

Let us recall the framework of infinite games in a little more detail. These
games are played between two players, namely Player 1 and Player 2. In each
round, first Player 1 picks a letter from an alphabet Σ1 and then Player 2 a
letter from an alphabet Σ2. An infinite play of the game is thus an ω-word
over Σ := Σ1 ×Σ2. One decides the winner of this play by consulting an ω-lan-
guage L ⊆ Σω, also called the winning condition: If the play belongs to L, then
Player 2 is the winner, otherwise Player 1 is. Games whose winning conditions
belong to the class BC(ext(K)) are referred to as weak games while those whose
winning conditions belong to BC(lim(K)) are called strong games.

A strategy for either player gives the choice of an appropriate letter a ∈ Σ1,
resp. a ∈ Σ2, for each possible play prefix where it is Player 1’s, resp. Player 2’s,
turn. We can capture a strategy for a player by collecting, for each letter a, the
set Ka of those finite play prefixes that induce the choice of a. For a strategy
of Player 1 we have Ka ⊆ Σ∗, for Player 2 we have Ka ⊆ Σ∗Σ1. We say that a
strategy is in K if each language Ka is.

The fundamental Büchi-Landweber Theorem [1] (also see [15, 3]) says that
for each regular ω-language L ∈ BC(lim(REG)), one of the two players has a
winning strategy, that one can decide who is the winner, and that one can present
a regular winning strategy (in the sense mentioned above) for the winner. In
short, we say that regular games are determined with regular winning strategies.
In [8, 9] an analogous result for the class SF of star-free languages was shown:
Star-free games are determined with star-free winning strategies. We shall focus
in this paper on subclasses of SF, where – as it will turn out – the situation is
more complicated. For instance, we show that for the class DD1 of languages
of dot-depth 1, games with winning conditions in classes BC(ext(DD1)) and
BC(lim(DD1)) are in general determined, not with winning strategies in DD1,
but only with those in classes DD2 and DD3 respectively. In contrast to this,
we show that for games in the more restricted class BC(ext(pos-DD1)), we have
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determinacy with winning strategies in DD1. (The class pos-DD1 is the closure of
languages w0Σ

∗w1 . . . Σ
∗wn, where wi ∈ Σ∗, under positive Boolean operations,

i.e. union and intersection. The Boolean closure of pos-DD1 is DD1.)
The paper is structured as follows. In Section 2 we summarize technical

preliminaries on infinite games, well known subclasses of the class SF of star-
free languages, and the subclasses of infinite languages that we consider in this
paper. Subsequently, in Sections 3 to 5 we consider games over these classes of
infinite languages and present results pertaining to winning strategies in these
games. We conclude with some open questions and perspectives.

2 Technical Preliminaries

2.1 Languages, Automata, Games

We use standard notation [4] regarding languages and automata. As a model of
automata with output we use Moore machines, which transform words over an
alphabet Σ into words of an alphabet Γ via an output function λ : Q→ Γ over
the state set Q.

Over ω-words we use the models of SW-automata (Staiger-Wagner automata
or weak Muller automata) and Muller automata. These are deterministic au-
tomata whose acceptance component is a family F of state sets. An ω-word α
is accepted by an SW-automaton if the set of visited states in the unique run
over α belongs to F ; for Muller automata one refers to the set of infinitely often
visited states instead.

For any alphabet Σ = Σ1 × Σ2, an ω-language L ⊆ Σω induces a game
with winning condition L; we shall just speak of the “game L”. In this game, a
strategy for Player 1 is a mapping σ : Σ∗ → Σ1 and a strategy for Player 2 is a
mapping τ : Σ∗ → Θ, where Θ := Σ2

Σ1 is the (finite) set of all mappings from Σ1
to Σ2. An infinite word α = (ai, bi)i∈N ∈ Σω is said to be consistent with σ, if for
all positions i ∈ N we have σ(α[0, i)) = ai. Analogously, α is consistent with τ ,
if for all i ∈ N we have τ(α[0, i))(ai) = bi. For two strategies σ and τ there is a
(uniquely determined) word α(σ, τ) that is consistent with both σ and τ .

If α(σ, τ) ∈ L for every Player 1 strategy σ, then τ is called a winning strategy
for Player 2. The other way around, if α(σ, τ) /∈ L for all Player 2 strategies τ ,
then σ is a winning strategy for Player 1. We say that a strategy σ for Player 1 is
in the class K if for every a ∈ Σ1 the languageKa = {w ∈ Σ∗ | σ(w) = a} is in K.
A strategy τ for Player 2 belongs to K if the languageKa→x = {w | τ(w)(a) = x}
is in K for every (a, x) ∈ Σ. For the language classes we consider, this definition
is consistent with the one presented in the introduction.

In this paper we focus on “finite-state strategies” realized by Moore machines.
A Moore machine implementing a strategy τ for Player 2, is given by Mτ =
(Q,Σ,Θ, q0, δ, λ) with λ : Q→ Θ such that for all w ∈ Σ∗ it holds λ(δ(q0, w)) =
τ(w). A Moore machine Mσ for Player 1 is obtained analogously by replacing Θ
with Σ1.

For all games of this paper, winning strategies of this kind suffice. In order
to obtain this format of a strategy, the given winning condition L has to be cast
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into automata theoretic form. For ω-languages in a class BC(ext(K)), where
K ⊆ REG, it is known that SW-automata (over Σ := Σ1×Σ2) can be used; for
ω-languages in a class BC(lim(K)) we may take Muller automata.

Usually, classical two-player games are considered in the literature over a
graph with two different types of nodes: one type belonging to Player 1, the
other to Player 2. Such a game graph can be obtained from the ω-automaton
recognizing the winning condition by doubling the state space and splitting the
moves by letters of Σ into moves via Σ1 and Σ2. However, for our purposes it is
more convenient to consider a game graph G = (Q,Σ, q0, δ) with only one type
of nodes, and in every node q we first let Player 1 choose an action from Σ1 and
after that let Player 2 choose from Σ2. With this “unified” model, the conversions
between ω-automata, game graphs, and Moore machines are straightforward.

As is well-known, the nodes (or: states) of the game graph in general do not
suffice as states of a Moore machine defining a winning strategy. If the state of
the game graph determines the move of the strategy, we speak of a positional
strategy, which can be represented as a mapping σ : Q → Σ1 or τ : Q → Θ,
respectively. Positional winning strategies suffice in the case of “reachability
games”, “Büchi games”, and “parity games” (see e.g. [16]). The first two of
which correspond to games L of the form ext(K) or lim(K) respectively, for
some regular ∗-language K. The last parity condition refers to a coloring of
game graph vertices by natural numbers, and a play is won by Player 2 iff the
maximal color occurring infinitely often in it is even.

The key results about positional determinacy also hold in our unified model
of game graphs. This can easily be shown by splitting the nodes of a unified
game graph as mentioned above, and copying the color of the original node to
the new ones, thereby transforming it to a game on a classical game graph.

The Boolean combinations as they appear in games with the Staiger-Wagner
winning condition or Muller winning condition are handled by converting the
winning condition into a special form, called parity condition while expanding
the game graph by an extra “memory component”. For weak games (with Staiger-
Wagner winning conditions), one replaces a state q of the game graph by a
pair (q,R) where R is the set of those states visited in the play up to the
current point. The set R is called the AR (“appearance record”). For strong
games (with Muller winning conditions), one refines this information by listing
the visited states in the order of most recent visits, and with a pointer to that
place in the sequence where the current state was located in the preceding step.
In a normalized presentation over a space {q1, . . . , qk}, we deal with expanded
states (q,R) where R is an LAR (“latest appearance record”): a pair consisting
of a permutation of (q1, . . . , qk) and a number h ∈ {1, . . . , n}. Over the expanded
state-space it suffices to satisfy the mentioned parity condition.

2.2 Classes of regular languages

In the subsequent definitions we recall some basic subclasses of the star-free
languages; for more background see [13, 6].
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A ∗-language K ⊆ Σ∗ is piecewise testable if it is a Boolean combination of
basic PT-sets Σ∗a1Σ

∗a2 · · ·Σ∗anΣ∗ where a1, a2, . . . , an ∈ Σ. Denote the class
of piecewise testable languages by PT. The class of positive Boolean combinations
of basic PT-sets (in which only ∪ and ∩ are used) is denoted by pos-PT.

A ∗-language K ⊆ Σ∗ is generalized definite if it is a Boolean combination
of sets wΣ∗ and Σ∗w with w ∈ Σ∗. We denote the class of generalized definite
languages by GDEF.

The dot-depth hierarchy, introduced by Cohen and Brzozowski [2], is a se-
quence of language classes DD0,DD1, . . . where DD0 = GDEF and DDn+1 can
be obtained as the class of Boolean combinations of languages K1 · . . . ·K` (over
a given alphabet) with K1, . . . ,K` ∈ DDn. As a special case let us mention
the languages of dot-depth 1 ; they are the Boolean combinations of basic DD1-
sets w0Σ

∗w1Σ
∗ · · ·wn−1Σ

∗wn where w0, w1, . . . , wn ∈ Σ∗. In analogy to the
class pos-PT we define pos-DD1 as the class of positive Boolean combinations
of basic DD1-sets.

The dot-depth hierarchy is strict, and it exhausts the class SF of star-free
languages. For later use we also recall a logical characterization of DDn (see [14]):
L (not containing the empty word) is in DDn iff it can be defined by a first-order
sentence that is a Boolean combination of Σn sentences1 where the signature has
symbols for the minimal and the maximal position of a word, the predecessor and
successor functions, the ordering < of positions, and the predicates Qa giving,
respectively, the positions with letter a.

The study of the language classes above is based on corresponding congru-
ences over a given alphabet. We recall these congruences for the case of languages
of dot-depth 1.

For k,m ∈ N and an m-tuple ν = (w1, . . . , wm) of words of length k + 1, we
say that ν appears in a word u if u can be written as u = uiwivi with suitable
words ui, vi such that i < j implies |ui| < |uj |. We say that ν appears in an
ω-word α if α can be written as u = uiwiαi with suitable words ui, αi such that
i < j implies |ui| < |uj |. With µm,k(w) (resp. µm,k(α)) we denote the set of all
m-tuples of words of length k + 1 that appear in w (resp. in α).

Two words u, v are (m, k)-equivalent (u ∼m,k v) if
1. u and v have the same k first letters,
2. the same m-tuples of words of length k + 1 appear in u and v, and
3. u and v have the same k last letters.

Then we have: (∗) A ∗-language K ⊆ Σ∗ is of dot-depth one iff it is a union
of Σ∗/∼m,k equivalence classes for some m, k ∈ N. (In the definition of ∼m,k we
refer to possibly overlappig infixes; this dos not affect the statement (∗).)

Let us proceed to ω-languages. For two ω-words α, β we write α ∼m,k β
if α and β have the same k first letters, and the same m-tuples of words of
length k+1 appear in α and β. Then we clearly have: (∗∗) An ω-language L ⊆ Σω

is in BC(ext(pos-DD1)) iff it can be written as a union of Σω/∼m,k equivalence
classes for some m, k ∈ N.
1 First-order sentences in prenex normal form with n alternating quantifier blocks
starting with an existential block.
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3 Winning strategies in restricted weak games

We start with games in BC(ext(pos-DD1)) which coincides with the class of
Boolean combinations of sets ext(K) where K is a basic DD1-set, or in other
words: Boolean combinations of sets w0Σ

∗w1Σ
∗ · · ·wn−1Σ

∗wnΣ
ω.

Theorem 1. Games in the class BC(ext(pos-DD1)) are determined with win-
ning strategies in DD1.

Proof. By the characterization (∗∗) at the end of the preceding section, we can
write an ω-language L in BC(ext(pos-DD1)) as a union of Σω/∼m,k equivalence
classes L =

⋃n
i=1[αi] where each αi ∈ Σω. We show how to obtain a game

graph with a parity winning condition that captures the game with winning
condition L.

In the graph, the play prefix w will lead to the ∼m,k-class [w] of w. The game
graph consists of the set of nodes Q = Σ∗/∼m,k. For every every (a, x) ∈ Σ, we
have edges from [w] to ([w(a, x)]). Note that this definition is well-defined, as
from the set ofm-tuples of length k+1 occurring in w, the suffix of length k of w,
and the new letter (a, x), one can determine the set of m-tuples of length k + 1
occurring in w(a, x). We designate q0 = [ε] as the start node of a play. For the
winning condition, we assign a color χ(q) to every node q, namely χ([w]) =
2 · |µm,k(w)| if there is an α ∈ L such that the prefix of α of length k equals
the length k prefix of w and µm,k(α) = µm,k(w), and χ([w]) = 2 · |µm,k(w)| − 1
otherwise. Note that χ is increasing since for w ∈ Σ∗, and (a, x) ∈ Σ we have
χ([w]) ≤ χ([w(a, x)]). A play is won by Player 2 in the game for L iff the
corresponding play in the graph game reaches ultimately an even color (and
stays there), giving again a win for Player 2.

By a well-known result on parity games, the parity game is determined, and
the winning player has a uniform positional winning strategy. This means in
particular, that in the parity game the winning player has a positional winning
strategy from q0. We show that she also has a DD1 winning strategy in the
original game.

Let λ : Q → Σ1 be a positional winning strategy of Player 1 in the par-
ity game. Define σ : Σ∗ → Σ1 to be σ(w) = a where a is the letter such
that λ([w]) = a. The strategy σ is in DD1, because for each a ∈ Σ1 we know
that σ−1(a) =

⋃
λ(w)=a[w] is in DD1. We still have to show that σ is win-

ning for Player 1 in the game with winning condition L. For this purpose, let
α = (a0, x0)(a1, x1)(a2, x2) · · · ∈ Σω be consistent with σ. We have to show that
α /∈ L. Then

ρ = [ε], [(a0, x0)], [(a0, x0)(a1, x1)], . . .

is a play in the parity game that is consistent with λ. So Player 1 wins ρ and
thus the maximal color p that occurs infinitely often in ρ is odd. Let i ∈ N such
that χ(ρ(i)) = p. Then all following positions must have the same priority p =
χ(ρ(i)) = χ(ρ(i+ 1)) = . . ., because χ is increasing. This means the set µm,k(w)
of m-tuples appearing in a word w from ρ(i) does not change from i onwards.
So the set of m-tuples of α is µm,k(α) = µm,k(w) for any w ∈ ρ(i). Furthermore
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the prefix of α of length k is equal to the length k prefix of w for any w ∈ ρ(i).
Since p is odd, and by the definition of χ there does not exist such a word α ∈ L,
so α /∈ L. This proves that σ is winning for Player 1.

In the analogous way it is shown that if Player 2 has a positional winning
strategy in the parity game from q0, then Player 2 has a DD1 winning strategy
in the game L.

ut
Next we turn to pos-PT, the class of positive combinations of basic piecewise

testable languages; they are of the form Σ∗a1Σ
∗a2 . . . anΣ

∗. We show that in
this case we can proceed with a much simpler approach that avoids the formation
of equivalence classes.

As a preparation we recall a result of I. Simon [10] about the transition
structure of automata that accept piecewise testable languages. For a DFA A =
(Q,Σ, q0, δ, F ) and any Γ ⊆ Σ, let G(A, Γ ) denote the directed graph underlying
the automaton A, such that G only has edges labeled with elements of Γ .
Proposition 2 ([10]). Let A be the minimal DFA accepting the ∗-language K.
Then K is piecewise testable iff
1. G(A, Σ) is acyclic, and
2. for every Γ ⊆ Σ, each component of G(A, Γ ) has a unique maximal state.

Theorem 3. Games in BC(ext(pos-PT)) are determined with winning strate-
gies in PT.
Proof. For every ω-language L ∈ BC(ext(pos-PT)), there exists a regular lan-
guage K ∈ PT such that L = lim(K). This is shown easily by induction over
Boolean combinations (cf. [7]). The minimal DFA A = (Q,Σ, q0, δ, F ) accept-
ing K can be considered as an ω-automaton accepting K. We thus obtain a game
graph with a Büchi winning condition. Since Büchi games are determined with
positional winning strategies (see e.g. [3]), the strategy of the winning player
only depends on the current state in the play. Assume, without loss of general-
ity, that Player 2 has a winning strategy. Then for every mapping θ : Σ1 → Σ2,
let Fθ ⊆ Q be set the states that induce a choice of θ. Consider the automaton
Aθ = (Q,Σ, q0, δ, Fθ). Since G(Aθ, Σ) = G(A, Σ), we conclude from the propo-
sition above that the language accepted by Aθ is a piecewise testable language.

ut
It is worth noting that the game graphs for games in BC(ext(pos-PT)) are

obtained directly from the finite automata that recognize the piecewise testable
languages in question, and that piecewise testable winning strategies are ob-
tained by observing a certain form of the associated transition graphs. For games
in BC(ext(pos-DD1)) we had to resort to the domain of congruences or, in alge-
braic terms, to the concept of syntactic monoids. This results in exponentially
larger game graphs. In order to avoid this blow-up one might try to apply a result
of Stern [12] that gives a property of transition graphs of (minimal) automata
which characterizes the languages in DD1; however, it seems that the necessary
step towards obtaining parity games (as done in Theorem 1) spoils this property
– which prevents a direct approach as for pos-PT.
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4 Winning strategies in weak games

Theorem 4. There are games in BC(ext(PT)), and therefore in BC(ext(DD1)),
that do not admit DD1 winning strategies.

Proof. Let Σ := {a, b, c, d} × {0, 1}, and define ∗-languages K1 := (a, 0)∗(b, 0),
K2 := Σ∗(d, 1), Kd := Σ∗(d, 0)Σ∗∪Σ∗(d, 1)Σ∗, and for every letter x ∈ {a, b, c}
define Kx := Σ∗(x, 1)Σ∗. Let L be the ω-language over Σ, that contains all
ω-words α such that

α ∈ ext(Kd) ∧
(
α ∈ ext(K1)⇔ α ∈ ext(K2)

)
∧

∧
x∈{a,b,c}

α ∈ ext(Kx).

All the ∗-languages above are in PT, so L is in BC(lim(PT)) and a fortiori in
BC(lim(DD1)). We see that L is won by Player 2: she remembers whether a pre-
fix in K1 has occurred; if so, then she responds to a later occurrence of d with 1,
otherwise with 0. We claim there is no DD1 winning strategy (and a fortiori
no PT winning strategy) for Player 2. Assume there is such a winning strat-
egy τ : Σ∗ → Θ, which is implemented by a DD1 Moore machine. Then there
are ∗-languages Kθ1 , . . . , Kθn

of dot-depth one, implementing this strategy. In
particular, Kd1 := {w | τ(w)(d) = 1} is a dot-depth one language as a finite
union of Kθi

languages. So it is a finite union of equivalence classes [wi]∼m,k
.

Note that in the word w := (akbkckakckbkak)m all possible m-tuples of
length k + 1 over the alphabet {a, b, c} appear. Let Player 1 play a strategy σ1
that chooses w · d · aω. Consider the unique word α1 that is consistent with both
σ1 and τ . Since τ is a winning strategy for Player 2 and σ1 plays akb in the
beginning, we have (d, 1) occurring in α. So the word w × {0} is in Kd1.

Now let Player 1 play the strategy σ2 which chooses akck ·w ·d ·aω. The word
w2 := akck · w contains all possible m-tuples of length k + 1 over the alphabet
{a, b, c}, as well. Then we have w1 ∼m,k w2 and thus w2 × {0} ∈ Kd1. Then the
unique word α2 that is consistent with both σ2 and τ contains (d, 1) as an infix.
This contradicts that τ is a winning strategy for Player 2. ut

Theorem 5. A game L ∈ BC(ext(DDi)) is determined with winning strategies
in DDi+1.

Proof. Given the language L as a Boolean combination of ω-languages ext(K)
with K ∈ DDi, we first proceed to a game graph where every node is a DDi

equivalence class (and hence a ∗-language in DDi). The game graph is equipped
with a Staiger-Wagner winning condition.

As explained in Section 2.1, we transform the game graph via the AR con-
struction to a new game graph with the parity winning condition. A state in
the new game graph is a pair (q,R) consisting of a state q ∈ Σ∗/∼DDi

of the
original graph and an AR R. Over this game graph (with the parity winning
condition), the winner has a positional winning strategy. We have to show that
each node (q,R) corresponds to a DDi+1 language in the sense that the play
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prefixes leading to (q,R) form a language K(q,R) in DDi+1. (Then the play pre-
fixes that cause the winner to choose a fixed letter a are obtained as a union of
languages K(q,R) and hence in DDi+1 as desired.)

For this purpose, it is convenient to apply the logical characterization of
DDi-languages as mentioned in Section 2.2. Each vertex q corresponds to the
language Kq consisting of play prefixes leading to q. Each Kq is a language
in DDi, defined by a Boolean combination ψq of Σi-sentences. For clarity we
write ψq(max) emphasizing the last position max of the current play prefix; so
ψq(x) expresses that the play prefix up to position x belongs to q. We have to
express the restriction that such a play prefix leads to the AR R ⊆ Q for the
state space Q. This is formalized by the sentence

ϕ(q,R) = ψq(max) ∧
∧
r∈R
∃xψr(x) ∧

∧
r 6∈R

¬∃xψr(x).

Since ψr is a Boolean combination of Σi-sentences, we obtain (in prenex form) a
Boolean combination of Σi+1-sentences. In this way we obtain the membership
of K(q,R) in DDi+1. ut

5 Winning strategies in strong games

Theorem 6. Games in BC(lim(PT)) are determined with winning strategies
in PT.

Proof. For every ω-language L ∈ BC(lim(PT)), there exists a regular language
K ∈ PT such that L = lim(K). (see [7]). The remainder of this proof is identical
to that of Theorem 3. ut

Theorem 7. There are games in the class BC(lim(DD1)) that do not admit
DD1 winning strategies.

Proof. Let L be the ω-language over {a, b} × {0, 1} where (a, 1) does not occur
and where (b, 0) occurs infinitely often iff (b, 1) occurs infinitely often. The lan-
guage L is in BC(lim(DD1)). We can easily see that L is won by Player 2. We
claim there is no DD1 winning strategy (and a fortiori no LT winning strategy)
for Player 2. Assume there is such a winning strategy τ : Σ∗ → Θ, which is
implemented by a DD1 Moore machine. Then there are ∗-languages Ka0, Ka1,
Kb0, and Kb1 of dot-depth one, implementing this strategy (cf. the proof of The-
orem 4). In particular Kb0 and Kb1 are dot-depth one languages, and we have
that Kb0 is a finite union of equivalence classes [w]∼m,k

:

Kb0 =
n⋃
i=1

[wi]∼m,k

Let Player 1 play a strategy σ which chooses (bak)ω. Consider the unique
word α that is consistent with both σ and τ . Since τ is a winning strategy for
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Player 2 and σ plays infinitely many letters b, we have both (b, 0) and (b, 1)
occurring infinitely often in α.

For any prefix ui := α[0, i) of α, the set of m-tuples of words of length k + 1
that appear in ui is a subset of the set of m-tuples that appear in ui+1. This
means that there exists a j ∈ N such that the set of m-tuples is the same for
all uj+i, i ∈ N. We choose ̂ ≥ j such that k + 1 divides ̂, which yields that
the suffix of u̂ of length k is equal to (a, 0)k. But then we have [u̂]∼m,k

=
[u̂+i(k+1)]∼m,k

, i ∈ N, since u̂ and u̂+i(k+1) have the same m-tuples, the same
prefix (b, 0)(a, 0)k−1 resp. (b, 1)(a, 0)k−1, and the same suffix (a, 0)k of length k.

We conclude that either u̂+i(k+1) ∈ Kb0 for all i ∈ N, or u̂+i(k+1) ∈ Kb1 for
all i ∈ N. In the first case, we have only finitely many occurrences of (b, 1) in α,
whereas in the second case we have only finitely many letters (b, 0) in α. This
contradicts that τ is a winning strategy for Player 2. ut

While staying at the same level of the dot-depth hierarchy does not yield
winning strategies for strong games, the final result shows that there are winning
strategies at most two levels higher in the hierarchy. Whether winning strategies
are also located in the level between remains open.

Theorem 8. A game L ∈ BC(lim(DDi)) is determined with winning strategies
in DDi+2.

Proof. We proceed as in the proof of Theorem 5. We first construct a graph
where every node is a DDi equivalence class – a ∗-language in DDi. Now, for
languages K ∈ DDi, we are given a game over the ω-language L ∈ BC(lim(K)).
We obtain the game graph for this game when we equip the graph constructed
above with a Muller winning condition. As explained in Section 2.1, we then
transform this game graph via the LAR construction to a new game graph with
a parity winning condition. A state in the new game graph is a pair (q,R)
consisting of a state q ∈ Σ∗/∼DDi

and an LAR R. Over this party game graph,
the winner has a positional winning strategy. To show that the winning strategy
belongs to the class DDi+2, it suffices to show that each node (q,R) corresponds
to a DDi+2 language.

We proceed to apply the logical characterization of DDi-languages (cf. Sec-
tion 2.2). Each vertex q collects the play prefixes that belong to a language
Kq ∈ DDi, defined by a Boolean combination ψq of Σi-sentences. So ψq(x)
expresses that the play prefix up to position x belongs to q, with ψq(max) quali-
fying the last position of the current play prefix. With the help of these formulae,
we now express the fact that each play prefix leading to any state (q,R) in the
parity game graph forms a language K(q,R) ∈ DDi+2.

Given a permutation perm of the state space of the original Muller game,
and an index h, an LAR can be defined as R = (perm, h). Let the sentence
ϕR expresses the fact that a play prefix has lead to R, then it is evident that
K(q,R) = ψq(max) ∧ ϕR. In order to avoid overloaded notation, we only provide
a description for an example: the most recent prefix types in perm are q, r, s,
in that order; the index value is h = 3. With ϕR, we express that the most
recent prefix types are q, r, s in this order and that for the previous prefix this

10



sequence is r, s, q: (1) the current play prefix (at position max) is q, at the
previous position is r, and any preceding position that is not occupied by r is
occupied by s, and (2) for the play prefix at position max−1 the most recent
play prefixes are in r, s, q in this order. This can be formally described as:

ϕR = ψq(max) ∧ ψr(max − 1)
∧ ∃x, y, z

(
max > x > y > z ∧ ψr(x) ∧ ψs(y) ∧ ψq(z)
∧ ∀x′(max > x′ > x→ ψr(x′))
∧ ∀y′(x > y′ > y → ψs(y′))

)
Since ψq, ψr, and ψs are Boolean combinations of Σi-sentences, we obtain (in
prenex form) a Σi+2-sentence. Thus, we obtain languages K(q,R) ∈ DDi+2. ut

6 Conclusion

The present paper continues the study of a question that was raised already
by Büchi and Landweber in their pioneering paper [1, Sect.3]: to analyze “how
simple winning strategies do exist” for a given class of games. Complementing
the results of [1, 8, 9] where solvability of regular and star-free infinite games
was established with corresponding winning strategies (again regular and star-
free strategies, respectively), we showed in this paper that for games of lower
complexity three levels need to be distinguished.
1. When we take the basic (pattern-) languages K underlying the piecewise

testable languages and the languages of dot-depth 1 and work with Boolean
combinations of sets ext(K), then determinacy with piecewise testable win-
ning strategies, respectively of dot-depth 1, holds.

2. Games with winning conditions in BC(ext(K)), where K is now the full class
of piecewise testable languages or languages of dot-depth 1, are determined
only with winning strategies beyond K, namely in DD2.

3. This situation is no better when games in BC(lim(DD1)) are considered;
there are winning strategies in DD3 but not in DD1. For BC(lim(PT)) we
fall back to case 1, and obtain winning strategies again in PT.

Finally, there remain some open problems. First, it is left open here whether
the bound i+ 2 of Theorem 8 can be improved to i+ 1. A more general problem
is to study complexity issues, e.g. how the sizes of automata for game presen-
tations and strategy presentations can diverge. Finally, the results of this paper
motivate setting up an abstract framework of passing from ∗-language classes
to corresponding ω-language classes (as winning conditions of games) and back
(by considering winning strategies), so that classes beyond the special cases of
the present paper are covered as well.
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